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Abstract

Title: Stochastic agent-based modelling for reality:
Dynamic discrete choice analysis with interaction

Name: Takeshi Takama
Society: St. Catherine’s College
Degree: Doctor of Philosophy
Submission: Trinity term 2005

This D.Phil. thesis develops a new agent-based simulation model to improve

the results of analysis, which solely uses discrete choice modelling, as well as

to analyse the effects of a road user charging scheme for the Upper Derwent

Valley in the Peak District National Park. The advantages of discrete choice

analysis are well known. However, results with these conventional conventional

approaches, which conduct analysis solely with discrete choice models, can be

biased if interaction and learning effects are significant. The Minority Game,

in which agents try to choose the option of the minority side, is an appropriate

tool to deal with these problems. The situation in the Upper Derwent Valley

can be explained with economic game theories and the Minority Game. The

two approaches mutually help to analyse the situation in the Upper Derwent

Valley leading to the development of a stochastic Minority Game. The sto-

chastic Minority Game was tested with an online game (questionnaire), which

was played 3,886 times by response in all around the world.

The practical part of this thesis examines the components of the stochastic

Minority Game with the data collected around the Upper Derwent Valley.

The main data was collected using a stated preference survey. Overall, 700

questionnaires were distributed and 323 of them were returned (i.e. a return

rate of 46.1 %). In the practical part, the agent-based model has four sub

modules: 1) Multinomial mixed logit model for mode choice, 2) Binary logit

model for parking location choice, 3) Markov queue model for parking network,

and 4) the Minority Game for parking congestion and learning.
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This simulation model produces comprehensive outputs including mode

choices, congestion levels, and user utilities. The results show that the road

user charging scheme reduces car demand in the Upper Derwent Valley and

ensures a reduction in congestion at the parking areas. The model also shows

that an exemption will increase the utilities of elderly visitors without sub-

stantially sacrificing those of younger visitors.

In conclusion, the simulation model demonstrated that oversimplification

in conventional approaches solely using discrete choice models gave significant

biases when real world problems were analysed.
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Extended abstract

Title: Stochastic agent-based modelling for reality:
Dynamic discrete choice analysis with interaction

Name: Takeshi Takama
Society: St. Catherine’s College
Degree: Doctor of Philosophy
Submission: Trinity term 2005

This D.Phil. thesis develops a new agent-based simulation model to improve

the results of analysis, which solely uses discrete choice modelling, as well as

to analyse the effects of a road user charging scheme for the Upper Derwent

Valley in the Peak District National Park. This thesis starts with confirming

the statement of problem below:

“Conventional approaches which conduct analysis solely

with discrete choice models have the advantage of sim-

plicity, but severe biases exist due to the neglect of some

interaction and learning effects, which might be seen as

oversimplification”

The proposed solution to the problem in this thesis is:

“Innovative interaction and learning are added to the

conventional approaches by agent-based modelling together

with discrete choice analysis”

To achieve this target, the road user charging and park & ride schemes at the

Upper Derwent Valley in the Peak District National Park are used as a testing

ground. Therefore, this thesis is the combination of theoretical and practi-

cal work. The advantages of conventional approaches using discrete choice

analysis and stochastic processes are confirmed in the introduction. The main

advantage of these methods is the efficiency in terms of computational power,
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simulation time, data collection, and so on. However, results with these conven-

tional approaches, which conduct analysis solely with discrete choice models,

are biased if interaction and learning effects are significant. The ignorance of

interaction effects are strongly related with the problems of imperfect infor-

mation, dynamic congestion, and transforming probability to the proportion

of population. The Minority Game, in which agents try to choose the option

of the minority side, is an appropriate tool to deal with these problems.

The theoretical part of this thesis starts by discussing the advantages and

disadvantages of the Minority Game to analyse real world problems. Follow-

ing this, the situation in the Upper Derwent Valley is explained with economic

game theories and the Minority Game. The two approaches mutually allow

analysis of the situation in the Upper Derwent Valley leading to the develop-

ment of a stochastic Minority Game. In addition, the strategies of the stochas-

tic Minority Game in the Valley, as the combination of thought patterns and

memories, are defined. The thought patterns are deductively discussed. The

distribution of memories is figured out while the mechanism of the stochastic

Minority Game is briefly tested by an online game (questionnaire), which was

played 3,886 times by response all around the world.

Even after the theoretical part ends, the theoretical discussion appears re-

peatedly in the practical part of this thesis due to the generative approach of

this thesis. Some theoretical arguments are meaningless without practical ex-

amples and justification in the generative approach. The theoretical arguments

are cleared more by the end of the practical part.

The practical part of this thesis examines the components of the stochastic

Minority Game with the data collected around the Upper Derwent Valley. The

behavioural data used for practical analysis were collected during the summer

of 2003. The behavioural survey on mode and parking location choices was

a destination survey with stated preference survey methods. The survey was
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conducted at the parking areas around the Upper Derwent Valley. After a

pilot survey, 700 questionnaires were distributed with face-to-face interviews

and 323 were returned (i.e. a return rate of 46.1 %). The traffic related data

used in this project are car movements, the arrival rate of private cars, parking

hours, and annual traffic flow on the A57. The arrival rate was collected in

front of a parking area during the survey period mentioned above. The parking

hours at each parking area were obtained from the parking beat surveys, which

were undertaken over three days during August 2001 by the Transport Office of

Derbyshire County Council. In addition, the annual traffic flow on the A57 was

collected by an automated system during 2003. The flow was westbound and

eastbound from 7:00 to 19:00, and the average flow was used for this project.

In the practical part, the agent-based model is combined with stochastic

discrete choice analysis such as multinomial discrete choice models to analyse

the situation in the Upper Derwent Valley. Therefore, this simulation model

is termed as stochastic agent-based modelling in this thesis. The simulation

model is created by Java programming language and the RePast agent-based

modelling toolkit. The discrete choice analysis and statistical analysis are car-

ried out with BIOGEME and R. The agent-based model has four sub modules:

1) Multinomial mixed logit model for mode choice, 2) Binary logit model for

parking location choice, 3) Markov queue model for parking network, and 4)

the Minority Game for parking congestion and learning. Multinomial mixed

logit model analyses travel behaviours with heterogeneous taste variation. A

binary logit model is used to analyse parking location choice. A Markov queue

model simulates the movement of cars and this module is considered as a mi-

crosimulation. Agent-based modelling combines all four models including the

Minority Game, which is discussed in the theoretical part.

In this case study, the Minority Game is about choosing a less congested

travel mode in the dynamic situation in the parking areas of the Upper Derwent
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Valley. This simulation model produces comprehensive outputs including mode

choices, congestion levels, and user utilities at both a micro and macro level.

The results show that the road user charging scheme reduces car demand in

the Upper Derwent Valley and ensures a reduction in congestion at the parking

areas. The model also shows that an exemption will increase the utilities of

elderly visitors without substantially sacrificing those of younger visitors.

In conclusion, the bias resulting from the neglect of interaction effects was

observed and confirmed. The proposed solution was achieved by improving the

approaches solely using discrete choice models in this thesis. The simulation

model developed in this thesis demonstrated that oversimplification in conven-

tional analysis gave significant biases when real world problems were analysed.

For the Upper Derwent Valley, the oversimplification was the ignorance of dy-

namic interaction among visitors, which was represented as congestion in a

parking network. Agent-based models have the advantages of incorporating

dynamic modelling and connecting different components in the model. There-

fore, the agent-based model simulated the situation of the Upper Derwent

Valley more realistically. This thesis established a new type of agent-based

model to examine the inter-relationships between a road user charging and

park & ride schemes and socio-economic and physical factors simultaneously.

4



Acknowledgments

First, I am particularly grateful to my supervisor, Dr. John Preston, for the

best combination of freedom and support. This was what I actually wanted

for my D.Phil. and I would not have enjoyed my D.Phil. as much otherwise.

Additionally, the most frequent and dedicated meetings in the final several

weeks were invaluable to my thesis as I did not think I could have finished my

thesis without his advice from these.

Second, I would like to thank to the Oxford Kobe scholarship for fully

funding my D.Phil. as well as my M.Sc. Without their financial support, I

would not have been able to even start my postgraduate education at the

University of Oxford. Conjointly, I would like to thank Dr. Francis M. Mburu

for encouraging me to apply for this opportunity. After graduation, I hope

to contribute to society by pledging my work, knowledge, and skills, gained

during this period, to show my appreciation to those who have invested in me.

Third, I would like to acknowledge the following people: Dr. Edmund

Chattoe for introducing the Minority Game, the park rangers and Derbyshire

County Council for personal interviews, Nikolaos Thomopoulos for collecting

data as his M.Sc. project, Dr. Kenichi Ishibashi for funding the M.Sc. project,
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Glossary

Only important keywords, which appear in more than two separate sections,
are presented here.

Terminology

Agent . . . . . . . . . . . . . . . . . . . . (Usually) A visitor to the Upper Derwent Val-
ley in computer models

ASC . . . . . . . . . . . . . . . . . . . . . . Alternative Specific Constant
Auto . . . . . . . . . . . . . . . . . . . . . Going to the Upper Derwent Valley by car
Bridge End Pasture . . . . . . . 3rd parking area from the Information Centre
Bus . . . . . . . . . . . . . . . . . . . . . . . Going to the Upper Derwent Valley by bus
Bus fare . . . . . . . . . . . . . . . . . . Fare for a bus service to the Information Cen-

tre
Cancel . . . . . . . . . . . . . . . . . . . . Cancelling a trip to the Upper Derwent Valley
CKR . . . . . . . . . . . . . . . . . . . . . Common knowledge of rationality
Derwent Overlook . . . . . . . . 2nd parking area from the Information Centre
FIFO . . . . . . . . . . . . . . . . . . . . . First In First Out in network models
Horizon . . . . . . . . . . . . . . . . . . . See H below
Hurst Clough . . . . . . . . . . . . . 4th parking area from the Information Centre
Headway . . . . . . . . . . . . . . . . . Period between departure times of buses
IIA . . . . . . . . . . . . . . . . . . . . . . . Independence of Irrelevant Alternatives (See

footnote on page 89)
IID . . . . . . . . . . . . . . . . . . . . . . . Independent and Identical Distribution (See

footnote on page 89)
Log-likelihood ratio. . . . . . . . See footnote on page 89
Memory . . . . . . . . . . . . . . . . . . Discrete experience each agent uses to play a

game
Parking fee . . . . . . . . . . . . . . . Parking fee for Bus is the fee visitors pay when

they park their car before getting on a bus.
Parking fee for Auto is the fee visitors pay
when they park at the Information Centre.

SIRO . . . . . . . . . . . . . . . . . . . . . System In Random Order in network models
Strategy . . . . . . . . . . . . . . . . . . In the models developed in this thesis, it is

the combination of a thought pattern and a
memory. Its symbol is either s or TH1M1.

Searching time . . . . . . . . . . . . Minute to find a parking space
The Information Centre . . . The Upper Derwent Information Centre
The Valley . . . . . . . . . . . . .. . . The Upper Derwent Valley
Toll . . . . . . . . . . . . . . . . . . . . . . £ to enter Derwent Lane from the A57
Visitor . . . . . . . . . . . . . . . . . . . . A visitor to the Upper Derwent Valley
Walking time . . . . . . . . . . . . . Minute from a parking space to the Informa-

tion Centre on foot
WTP . . . . . . . . . . . . . . . . . . . . . Willingness to pay for road user charging
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Symbol

→ R . . . . . Associating to a real value
α . . . . . . . . . Constant coefficient
β . . . . . . . . . Nonconstant coefficient
ε . . . . . . . . . Error term
θs

t . . . . . . . . Success score of a given strategy s at a time step t within the
scope of horizon H. Its equation is shown on page 78

λ . . . . . . . . . Departure rate of car per minute from the Valley
µ . . . . . . . . . Arrival rate of car per minute at the Valley
ρ̄ . . . . . . . . . Adjusted rho-square for log-likelihood ratio test
Σ . . . . . . . . Summation
σ . . . . . . . . . Sample standard deviation
A . . . . . . . . Auto option (Side A in Chapter 4)
Ac . . . . . . . a set of actions leading to the next unknown future state
a . . . . . . . . . Action
B . . . . . . . . Bus option (Side B in Chapter 4)
C . . . . . . . . Cancel option
e . . . . . . . . . Environment state
exp(x) .. . . Expositional transformed x
H . . . . . . . . Length of the horizon which represents the horizon for which

each strategy records its score
H0 . . . . . . . Null hypothesis
H1 . . . . . . . Alternative hypothesis
hour . . . . . . Time of day and its interval is [10:00, 15:00]
L(0) . . . . . . Null log-likelihood ratio for multinomial logit models

L(β̂) . . . . . Final log-likelihood ratio for multinomial logit models
m . . . . . . . . Sample mean
max(x) . . . Maximise x
N . . . . . . . . Population size, the number of agents
nx . . . . . . . . Number of individuals choosing x
P (x) . . . . . Probability of choosing choice x
r . . . . . . . . . Run, which is a sequence of environmental states and actions,

i.e. e0
a0−→ e1

a1−→ e2
a2−→ e3 . . .

at−1−−→ et

R
xs

i
i . . . . . . Return from the selected choice at time step i where x is se-

lected choice by strategy s at i. Generally simplified to Rx.
s . . . . . . . . . Strategy. Same as TP1M1 below
TP1M1 . . . Strategy, which is the combination of Thought Pattern and

Memory. In this case, this strategy uses thought pattern 1
with memory 1.

t . . . . . . . . . Time step, e.g. t− 1 is the last time step
U . . . . . . . . Unobserved utility including error term
V . . . . . . . . Observed utility excluding error term
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Chapter 1

Framework of thesis and the

background on choices and

interaction

1.1 Research aims

This D.Phil. thesis develops a new agent-based simulation model to improve

the results of analysis, which solely uses discrete choice modelling, as well as

to analyse the effects of a road user charging scheme for the Upper Derwent

Valley in the Peak District National Park. The purposes of this chapter are

to clarify the research aims and to provide overall background information for

this thesis. The statement of a key problem throughout this thesis is:

“Conventional approaches which conduct analysis solely

with discrete choice models have the advantage of sim-

plicity, but severe biases exist due to the neglect of some

interaction and learning effects, which might be seen as

oversimplification”
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The proposed solution to the problem in this thesis is:

“Innovative interaction and learning are added to the

conventional approaches by agent-based modelling together

with discrete choice analysis”

Based on the problem and proposed solution above, this thesis is subdivided

into two parts, theoretical and practical, so that there is also a sub-aim in each

part.

1.1.1 Aim at theoretical level

At a theoretical level, this thesis tests the traditional unidirectional cause-and-

effect relationships, learning, and consequently some degrees of rationality.

These assumptions are widely known; however, they are often ignored for the

sake of the methodological usage in mathematical programming. The theoret-

ical part discusses the implication of the ignorance from the interdisciplinary

viewpoint of economics, social simulation, and statistics.

In particular, two methodologies are combined to analyse congestion: 1)

traditional economic approaches, including game theories and probabilistic

discrete choice analysis and 2) agent-based modelling. Agent-based mod-

elling is the simulation of society from the bottom-up with the interaction

of autonomous agents and tries to duplicate real world phenomena through

computerisation (Epstein and Axtell, 1996, pp.153–162). In other words, the

agent-based model tries to use the detailed decision making mechanism from

lower-level society to analyse upper-level society. In contrast, one of the state-

of-the-art econometric models, discrete choice analysis, produces a choice from

a discrete set by treating unknown factors as random components (Ben-Akiva

and Lerman, 1985). The latter has advantages over the former in terms of

3



the simplification of problems. Both models are analysed with computational

power although their approaches are different. Once parameters are calculated

by a computer software package, the behaviours of individuals are represented

by mathematical formulas in discrete choice analysis. Therefore, afterward,

the choice of individuals can be calculated manually with any input data. In

contrast, the conventional agent-based model is non-parametric, which means

all behaviours are expressed as IF-THEN rules. This means that the choice

of individuals has to be simulated to calculate each result in an agent-based

modelling analysis. Moreover, the recent studies on human genomic show that

the human mind works as IF-THEN rules even at a level of genes and proteins

(Marcus, 2004); therefore, this approach could be a better representation of

the real human decision making.

The comparison of the two types of models can be illustrated as:

Discrete choice ⇒ reductive ⇒ simplistic ⇒ ¤X more-feasible︸ ︷︷ ︸
efficiency of model

⇒ parametric ⇒ ¤ theoretic

Agent-based ⇒ holistic ⇒ complex ⇒ ¤ less-feasible

⇒ non-parametric ⇒ ¤X realistic︸ ︷︷ ︸
reality of model

The analysis of real world problems such as parking congestion may have been

compromised in reductive models for methodological purposes since it was

more feasible in terms of research time and cost. However, the compromise may

be unnecessary if holistic models, which represent the world clearer and more

realistically, are feasible. Therefore, while integrating the two approaches, this

project proposes a new model, which combines the advantages of modelling

efficiency and modelling reality.
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1.1.2 Aim at practical level

The practical aim is to analyse real congestion problems with the arguments

explained in the theoretical part. It has been argued that methodological stud-

ies have not been motivated enough to make theories reflect the real world in

social sciences compared to physical sciences in the past centuries (Moss, 2002).

This is a strong viewpoint; however, this issue has been continuously criticised

since 1970s (Siegfried, 1970), and the problem is true especially in transporta-

tion modelling (Mackie and Preston, 1998). A panel discussion was held during

the ninth World Conference on Transport Research 2001 to improve the rel-

evance of transportation modelling to practice. One of the conclusions from

the discussion was that the current transport modelling was too theoretically

oriented and did not look at model outcomes and realities (Ben-Akiva and

Bonsall, 2004, p.102).

This study is particularly interested in the multinomial discrete choice

model, which has been widely practised in transport modelling. Unlike agent-

based simulation models, conventional approaches which conduct analysis solely

with discrete choice models have no mechanism to consider the interaction

of people and consequently cannot formulate the dynamic process of conges-

tion (Takama, 2004b). Hence, conventional approaches which conduct analysis

solely with discrete choice models are expected to produce biased outputs. The

comparison and combination of the two approaches were conducted at the Up-

per Derwent Valley, the Peak District National Park (Figure 1.1). Moreover,

both approaches are used to forecast the effect of a road user charging and park

& ride schemes on congestion by day-trip visitors at the four car parks. The

forecasting and evaluating of the transport policies are carried out in terms of

1) the level of congestion and 2) user utility.

One of the practical aims in this thesis is to improve the relevancy of

5
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Figure 1.1: Map of Derwent Valley

transportation modelling to reality. Having said that, many concepts in this

project are at an experimental level and the proposed scheme may not be

implemented in the Upper Derwent Valley. In other words, this D.Phil. thesis

can be seen as a relatively large pilot study for the future research, and the

Upper Derwent Valley was used as a testing ground for a new concept of

simulation modelling.

It is important to emphasise that although the theoretical and practical aims

are separated at different levels, they are strongly interrelated. For example,

the accuracy in the results between the two different analyses is not testable

without the case study of the road user charging scheme at the Upper Derwent

Valley. For example, one of the traditional neo-classical economics assump-

tions, “the summation of local optima equals a general optimum”, is testable

by comparing the results from a conventional approach using solely discrete

choice models and an agent-based simulation model with same input data.
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1.1.3 Conceptual framework and research approach

The research is conducted by combining various approaches - empirical, de-

ductive, and inductive. Particularly, the agent-based simulation model re-

quires iteration between a deductive1 and inductive2 strategy as the researcher

develops the model. In other words, one simulation starts with a set of as-

sumptions, and then uses an experimental method to generate data which can

be analysed inductively (Axelrod, 1997, pp4–5). Therefore, Epstein and Axtell

(1996, p.177) identify this new category as the generative approach, which is

the combination of the deductive and inductive approaches.

The final model of this D.Phil. project is the combination of four sub mod-

ules, namely multinomial discrete choice models of mode choice and parking

location choice, Markov queue parking network, and the Minority Game (Fig-

ure 1.2). Multinomial logit model is a type of discrete choice models and these

terms are interchangeably used in this thesis. Also, this thesis is largely divided

into two parts, theory and practice. As Table 1.1 shows, the four sub models

Multinomial logit

model for
mode choice

Logit model

for parking

location choice

Minority Game for

parking congestion

and learning
Next run

Markov queue

for parking

network

Other agents

Figure 1.2: Structure of agent-based simulation

are discussed and implemented in both parts of this thesis. This monograph

thesis has to be presented in a linear format, i.e. from the first page to the final

page, but the process of writing was generative, i.e. iterative and interactive

1loosely, testing of sets of assumptions and their consequences (Gilbert and Troitzsch,
1999a, p.25), i.e. general to specific

2the development of theories by generalisation of observations, i.e. specific to general
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modification of theoretical and practical parts. This means that theoretical dis-

cussion contributes to the construction and evaluation of models, and practical

analysis contributes to the formulation of theoretical thoughts. The theoretical

arguments and models were developed by co-evolutional processes. Due to this

co-evolutional process and generative approach, the final products are different

from my work presented in two conferences in Florida (Takama, 2004b) and

Bristol (Takama, 2005) and a workshop in Oxford (Takama, 2004a).

Furthermore, it is important to clarify that although this thesis has a the-

oretical part, this does not aim to develop any kinds of social theories. The

theoretical part is used only to discuss my theoretical arguments. That is, this

thesis uses conventional theories to understand the mechanism of empirical

phenomenon or to check how the theories reflet reality in some early chapters;

however, this thesis does not extract any new theory from the empirical results.

In other words, this thesis tries not to be theory-oriented since as Clark (1998,

p. 77) says; “we seem to have too many theories for the empirical observations

available and too little theory that makes sense of the scope and diversity of

the world”. This thesis uses the term ‘theoretical argument’, but it can be

paraphrased to ‘anti-theoretical argument’.

1.2 Background for theoretical arguments

This section shows the problems of conventional assumptions, explains what

agent-based modelling is, and then, proposes how the simulation modelling

works as an alternative.

1.2.1 Limitations of traditional assumptions

Current social science modelling, such as neoclassical economics with mathe-

matical programming methods, is constrained by some significant underlying

9



assumptions. One of the main ones is that the summation of local optima

forms a general optimum (Epstein and Axtell, 1996, pp.10-12). In other words,

a general optimum can be achieved if, and only if, the interaction of agents

does not produce any sub-effects to the society and environment. Therefore, it

ignores the co-evolutionary interactions of agent-agent and agent-environment

that are observed in real life. The omission of these interactions can be inter-

preted as zero transaction and external costs in the society in economic term

(Berger, 2001, pp.245-246). These costs exist in real-life, for example in the

transport sector, and are determined by the quality of the system. For exam-

ple, a better transport system improves information availability and reduces

transaction costs; therefore, visitors can reduce the risk of travelling to con-

gested areas. At the same time, society can reduce the external costs of visible

pollution and traffic noise. Because of the assumptions, the decision making

and forecasting abilities of the conventional modelling approach are limited

when it is applied to real world problems including traffic congestion (Tolley

and Turton, 1995, p.20).

Traditional analysing approaches using discrete choice analysis have the

underlying assumption of fixed tastes. This is problematic if people have het-

erogeneous characteristics. Transport and tourism economics involves hetero-

geneous agents since visitor behaviours are often discrete choices. In other

words, visitors and commuters cannot select a part of a mode while using

another type of a mode (McCarthy, 2001, p.93). If all consumers have homo-

geneous taste as defined by neo-classical economics, only one optimal mode

of transport will survive. However, more than one mode exists in the real

transport system so the underlying assumption of the identical preference for

all agents is implausible.

The problem of homogeneous taste is solved in multinomial mixed logit

models (Train, 2003) and recently in the agent-based simulation model (Page,

10



1999, p.11), recently. Therefore, the problem can be solved by using a multino-

mial mixed logit model, an agent-based simulation model, or the combination

of both. This project proposes the combination approach since it copes with

the co-evolutionary interactions of heterogeneous factors. One of the crucial

questions to be asked by this research is:

“How do the results from conventional analysis, which

solely uses discrete choice models, change when dynamic

interaction and learning are integrated by agent-based

modelling?”.

1.2.2 Agent-based modelling as a solution to conven-

tional assumptions

Before explaining why agent-based modelling can be one of the solutions to

the problem of the traditional assumptions, this section briefly explains the

basics of agent-based modelling.

History and basic concept of agent-oriented program, multi-agent

system (MAS) and agent-based modelling

Agent-based simulation originated from the next-generation-computer-paradigm,

agent-oriented programming following object-oriented programming (e.g. Java

and Object-C) and its computer system, multi-agent system (MAS) (Wooldridge,

2002, pp.303–315). The concept of an agent did not emerge until the mid 1980s

and the research in MAS seriously started in the late 1990s.

Although the definition of an agent may not yet be agreed upon, Wooldridge

and Jennings’s (1995) statement is widely accepted:

An agent is a computer system that is situated in some environ-

ment, and that is capable of autonomous action in this environment
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in order to meet its design objects.

The definition above is still rather abstract and Wooldridge and Jennings

(1995) state the four typical properties of computer agents are: autonomy3,

social ability4, reactivity5, and proactivity6. It is not necessary to understand

how these four properties of an agent work. Rather than showing the mechan-

ics of the complex system, many researchers use an intentional stance, such as

“belief” and “hope”, to explain and programme the system (Wooldridge, 2002,

p.30). The intentional stance is merely a new abstraction tool to manage

the complexity of the computer system. For example, the history of pro-

gramming languages moves from low-level machine-oriented languages (e.g.

0100110101...) to abstract languages similar to human perception (e.g. for,

while, class, switch). The intentional stance used for many researchers is

human-like mental attributes such as belief, desire, and intentions (Bratman

et al., 1988), and the agent system with the three attributes is the so-called

Belief-Desire-Intention (BDI) model.

It is important to bear in mind that beliefs are not always true7, so that the

information an agent has could be wrong, particularly, for contingency truths

in the beliefs of social simulation (e.g. you believe it will rain tomorrow). This

is expressed by a modal logic:

MBelief |=w ϕ where W = {w,w′, . . . }
W 6= ∅

3Agents operate without others having direct control of their actions and internal state.
4Agents interact with other agents through some kind of ‘language’ (a computer language,

rather than natural language).
5Agents are able to perceive their environment (which may be the physical world, a virtual

world of electronic networks, or a simulated world including other agents) and respond to
it.

6As well as reacting to their environment, agents are also able to take the initiative,
engaging in goal-directed behaviour.

7This attribute is known as “no reflexive” (Meyer and Lomuscio, 2003)
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The formula is read as ϕ is true at w in a model of belief MBelief (i.e. MBelief

captures ϕ in w), and w is a world in a non empty set of possible worlds8

W . From this formula, the two properties are deduced; a belief is “possible

true”, which means true at some worlds, and perhaps false at others (Meyer

and Lomuscio, 2003), and an agent believes ϕ if ϕ is present in the agent’s

belief model (Konolige, 1986). This means that an agent in a BDI model may

have localised information from experience, but not have perfect information

in the world. The desires could be a set of listed choices an agent has and the

intention is a chosen desire.

Moreover, it should be stated that agent-based modelling and MAS use not

only computer science concepts, but also economic and social science concepts.

This trend is likely to become much more widespread over the coming years.

For example, although conventional multi-agent system is based on IF-THEN

rule base, the idea of utility with a classical decision theory is sometimes used

to determine the intensity amongst the listed desires (Rao and Georgeff, 1995,

p.4).

Simulation of social phenomenon with agent-based modelling

Concurrently with the emergence of agent-oriented programming and multi

agent system, the computer simulation of social phenomena started in the

1990s (Gilbert and Troitzsch, 1999a, p.1). The combination of the two trends

brought prosperity to the agent-based modelling of social simulation.

In social simulation, there are the environments of artificial societies and

computer agents. After the agents are placed into an environment, they need

‘sensors’ to perceive their local neighbourhood and some means with which to

affect the environment (Gilbert and Troitzsch, 1999a, p.167). Communication

8The idea of possible worlds is developed by Kripke in the 1950s (Kripke, 1980). Each
world represents one state of affairs considered possible, given what is known.
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between agents is likely to be conducted through the environment, so agents

need to be able to ‘hear’ messages coming from the environment and to send

messages to the environment for the communication between other agents. The

reason to route the communication between agents through the environment

is to make the effect of sequential running of simulation less serious 9 (Gilbert

and Troitzsch, 1999a, p.168).

Agent-based modelling is used from the theoretical modelling of the human

settlement in the prehistoric Europe - EOS project (Doran et al., 1994) to the

practical decision making tools of policy analysis such as freshwater manage-

ment in England - FIRMA project (Downing et al., 2001). One of the most

common misunderstandings is that “the goal of simulation research is to fully

simulate the real situation”. The initial aim can be the duplication of real data

in computer simulation (Moss and Edmonds, 2004), but the researchers in this

field are more interested in understanding factors and processes of simulation

models. For example, in the EOS project, the goal of simulation is to try to

understand some of the factors involved in the emergence of social complex-

ity rather than to fully simulate these ancient societies (Doran et al., 1994).

Similarly, in the FIRMA project, the aim is to understand the impact of gov-

ernments exhorting water consumers to exercise care and caution in water

usage during times of drought (Downing et al., 2001, p.206). The final target

of agent-based modelling in this thesis is not to reproduce the real transport

system in a computer, but to show how the conventional approach, which use

solely discrete choice models, can be improved by agent-based modelling in

terms of model reality and model efficiency.

9The order of running simulation is sequential since programme code is written sequen-
tially; if the programme of agent A is written before agent B, the agent A communicates
to agent B before agent B communicates to agent A. However, through the communication
between agents in the environment, the sequential problem is nullified; messages from agents
are collected and stored in the environment. At the beginning of the next time step, all the
stored messages are delivered to their recipients.
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Agent-based modelling as a solution

Agent-based modelling could be a solution to the problem of the assumptions

made by discrete choice analysis. Agents in the model interact with the en-

vironment and other agents through socialisation, reaction and pro-action. In

other words, agents do not need to know all consequence of actions since agents

interact through their experience and current situation of local environment –

There is no assumption of perfect information.

In reality, it is unlikely that individuals can gather perfect information

because of shortsightedness and bounded rationality (Varian, 1993, pp.602-

662). Therefore, when utility theory is combined with agent-based modelling,

agents calculate their utility based on their belief and experience. In other

words, an agent chooses the best option which has the maximum utility in

the current local environment including the reflection from own experience10

and the actions11 that lead to the next environment situation. The maximum

utility function of an agent at a particular environment is:

max{U : e
Ac−→} → R where E = {e0, e1, . . . }

Ac = {a, a′, . . . }
(1.1)

This function shows that the maximum utility, max{U}, of an agent associates

a real value12 with its current environmental state, e and a set of actions

leading to the next unknown future state, Ac. This is a rather shortsighted

optimisation since the value assigns utilities to a local and short-term state; it

is difficult to specify a long-term view.

In contrast, if an agent has perfect information as assumed in conventional

10The environment may be in any of finite set E of discrete instantaneous states
(Wooldridge, 2002, p.31). For example, an environment state changes from e0 to e1 and
so on.

11An agent has a repertoire of possible actions, which transform the state of the environ-
ment

12‘→ R’ means associating to a real value
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modelling, the agent could have the utility function based on its run (r), which

is a sequence of entire environment states (e) and actions (a):

max{U : r} → R where r : e0
a0−→ e1

a1−→ e2
a2−→ e3 . . .

at−1−−→ et (1.2)

For the decision making process with a utility function based on a run

(function 1.2), an agent must know all future environmental states, actions,

and their interactions, i.e. the assumption of perfect information. Such infor-

mation is impossibly achieved in the real world, so conventional models tend

to ignore the interaction effects at a practical level. Therefore, the agent-

based model in this research uses agents with random utility theory; however,

the rationality is bounded by beliefs, experience, and shortsighted interactions

(Simon, 1957). By comparing the agent-based modelling of bounded ratio-

nal agents with the perfect rational agents, this research may answer how the

imperfection of information, such as interaction effects, affects the result of

analysis. The formal hypotheses in this question are:

H0: Model output| max{U : e
Ac−→, imperfect information} → R =

Model output| max{U : r, perfect information} → R

H1: Model output| max{U : e
Ac−→, imperfect information} → R 6=

Model output| max{U : r, perfect information} → R

In brief, this hypothetical question tests if a model based on an iterative process

with imperfect information and another model based on a single calculation

with perfect information produce the same output.

This section attempted to explain the problems of traditional economic

modelling and the potential advantage of agent-based modelling. Then, the

conventional approach and improved approach with agent-based modelling are

compared with a real case study of the Upper Derwent Valley.
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1.3 Background on the transport situation of

England and the Upper Derwent Valley

This section starts with the issues related to the transport sector in Eng-

land and then the story is narrowed into the case study of the thesis project.

Tourism is one of the key transport components, especially in the areas of

outstanding natural beauty. Transport policies, such as private car access

regulations or road user charging, can improve values of natural beauty by

reducing visual intrusion, air pollution, and traffic noise (Dillon, 2002). Eco-

logical conservation values, including the preservation of biodiversity and rare

species, may also improve directly and indirectly by reducing emissions of gases

and suppressing travel demand, which cuts the need for road construction.

Also, travellers may directly improve their user utilities after congestion lev-

els are reduced by these transport policies. Car drivers may shorten their travel

times and pedestrians and cyclists may increase their travel safety around the

tourist destinations. In this research, visitor demand and congestion are fo-

cused on since they are the major transport related concerns in the area of

British natural beauty.

1.3.1 Traffic congestion and road user charging

Road congestion has been seriously affecting the tourism sector in England

and will do so for the next decade:

Traffic congestion and associated air pollution are now perceived

by some as the biggest threat to maintaining the economic utili-

ties from tourism in many of the UK’s prime destinations. Traffic

congestion also impacts negatively on the visitor experience, the

health of local people, etc. (Department for Culture, Media and
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Sport, 1998, p.6).

Visitors to the National Parks are heavily dependent on their private cars.

According to underlying economic theory, road user charging scheme is a suit-

able method to make sure that the road users (e.g. car drivers) pay for the

external costs generated from their travel (Steiner and Bristow, 2000, p.95).

Currently, one of the major objectives to install road user charging scheme is

to reduce traffic congestion. In addition, road user charging scheme is planned

where there are high levels of seasonal traffic in rural areas such as the Lake

District National Park and the Peak District National Park (Eckton, 2003; De-

partment of Environment, Transport and Regions, 1998, p.115). Therefore, it

is inevitable to consider the implementation of a road user charging scheme

during a summer holiday period around the Upper Derwent Valley, which is

one of the most popular destinations for visitors to the Peak District National

Park.

1.3.2 Case study site description

The case study site is the Upper Derwent Valley, the Peak District National

Park, during the summer holiday period. It is estimated that 60% of the

population of England and Wales lives within two hours travel distance by car

to the Peak District National Park. Moreover, the National Park is the second

most visited national park in the world after Mt. Fuji in Japan (Derbyshire

County Council, 2002). The Upper Derwent Valley is visited by around two

million visitors a year, approximating a travel of 500,000 cars in use. For

example, on the 2001 August Bank Holiday Monday, 3,044 cars travelled along

the Upper Derwent Valley. There is only one practical transport mode to get

to the Valley namely the automobile. The survey was conducted in the Upper

Derwent Valley in the summer of 2003. In totally, 700 questionnaires were
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distributed and 323 were returned.

The Upper Derwent Valley is located between two large cities, Manchester

and Sheffield. The access to the Valley by private car is easy not only from local

towns but also from these nearby cities via the A57 (Figure 1.1). The entrance

to the Upper Derwent Valley by car is only from the A57 and only through

Derwent Lane, which comes to a dead-end. Access by public transport to the

Upper Derwent Valley is revealed to be unpopular from the interviews during

this survey and comments on the questionnaires. The reasons for unpopularity

include the low frequency of bus services and the inflexible regulations (e.g.

visitors cannot travel by the public buses with their bicycles). In fact, most

of the buses observed during this survey were almost empty. There are four

parking areas on Derwent Lane: (from the Information Centre to the A57)

1) Upper Derwent Information Centre parking area, 2) Derwent Overlook, 3)

Bridge End Pasture, and 4) Hurst Clough. The approximate parking capacity

of each parking area is 134, 77, 58, and 18 cars respectively13. Only the first

parking area requires a parking ticket, which costs £2.50 for one day parking

or 50 pence per hour.

There are two main reasons why the Upper Derwent Valley was chosen

for this research. First, the Upper Derwent Valley receives a large number of

visitors by cars during the summer period. It is important to note that even on

the busiest days, the congestion on the roads, such as on the A57 and Derwent

Lane, are minimal, but severe congestion occurs around and in the parking

area of the Upper Derwent Information Centre (the Information Centre). The

most scenic area starts from the Information Centre (The area north from the

Information Centre in Figure 1.1) and the access to the area by private cars

is restricted during weekends, holidays, and high seasons. Therefore, visitors

13The first parking area at the Information Centre has two sections, but these are consid-
ered as one parking area in this research. Also, the third parking area includes a parking
space on road shoulder around the parking area.
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to the Valley try to park as close to the Information Centre as possible to

reduce walking time before they start hiking in the scenic area. Additionally,

the Information Centre also has extra attractions such as a souvenir shop and

a take away shop. These situations make the competition of parking at the

Information Centre severe. If the parking area is full, the visitors move to the

next parking area, and so on. The movements of cars in the Upper Derwent

Valley are discussed in Chapter 7.

Second, currently the implementation of a road user charging scheme is

being considered for Derwent Lane (Derbyshire County Council, 2000). A

proposed, but not confirmed, tollgate for the road user charging scheme is

shown in Figure 1.1. A park & ride scheme is also planned in this area as

the complementary policy tool of the road user charging scheme. There are

three proposed parking areas for the park & ride scheme around the A57 and

Bamford, but these locations have not been confirmed yet. The road user

charging scheme is still under consideration and may take some time to be

implemented or could be withdrawn. However, the Upper Derwent Valley is

still one of the best case study sites in the UK to analyse the effects of a

road user charging scheme around the area of natural beauty. The road user

charging and park & ride schemes are further explained in Chapter 6.

1.4 Background for modelling discrete choice

behaviours

1.4.1 Random utility theory and discrete choice analysis

The random utility theory was formulated in the late 1950s by Luce (1959)

and implemented statistically in 1970s (Manski, 1977; McFadden, 1981). To-

day, it is adapted in many human behavioural models including transport
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demand models. In this theory, individuals tend to select the alternative,

which maximises their utilities; however, the decision is still bounded to ran-

dom components coming from the uncertainty in utility functions (Ben-Akiva

and Lerman, 1985). In 1944, Neumann and Morgenstern (1953) developed the

formal theory of risk and uncertainty, which was applied to the random utility

theory. Although the two concepts make the expected decision of agents differ

between agents, the agents try to maximise their utilities (Sandholm, 1999,

p.214). For example, although an agent may visit a national park at a 50%

congestion level, although another agent my prefer to stay at home. This is

because of the risk, which agents have different feelings about. On the other

hand, they may make different decisions even within the same individuals due

to uncertainty in the utility functions. The utility of a decision maker can

be estimated either by assuming mathematical functions or by fitting a curve

empirically among a set of a discrete utility distribution. No matter what the

utility function is, there is always an estimation problem, and the functions

above are likely to be theoretical idealisations, but not reality. Therefore, the

unobserved disturbance term, ε, should be associated on the right-hand side

of the equations, i.e. U(x) = V (x) + ε. Also, the disturbance term, ε, is a

random variable that is usually distributed with mean zero and some form

of variance. This is called the random utility theory, which is an important

baseline of econometric discrete choice analysis.

Random utility models have been extensively used in the field of trans-

portation research since the emergence of the model in the last 30 years. All

applications were likely to be based on the multinomial logit model for discrete

choice analysis (McFadden, 1974). Discrete choice analysis examines individual

choice between discrete alternatives, such as the choices of travel mode based

on individual behavioural data, including travel origin and the frequencies of

trip (Spear, 1977). Therefore, its models are often called disaggregate travel
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demand models. In this thesis, the mixed logit model is used, which is one of

the state-of-the-art discrete choice models (Bolduc and Ben-Akiva, 1991; Ben-

Akiva and Bierlaire, 2003). The mixed logit model considers heterogeneous

individual tastes, which are assumed to have some defined distribution as well

as overcoming the problem of independence of irrelevant alternatives (IIA)14

in conventional logit models by taking the covariance between choices into

account (Train, 2003).

The mixed logit model and any other discrete choice models cannot be

calibrated by using standard curve-fitting techniques, such as least squares

estimation, because their dependent variable is an unobserved probability (be-

tween 0 and 1) and the observations are the individual choices, which are either

0 or 1. Therefore, the mathematical transformation of the utility values is re-

quired to get probability values between 0 and 1. A basic logit function for

three alternatives is:

P (A) =
exp(UA)

exp(UA) + exp(UB) + exp(V C)

where Ux is utility and P (x) is an unobserved probability, and the parameters

of the utility function are not fixed in the mixed logit model due to taste

variation. The factors considered in this thesis include parking fee, bus fare,

toll fee, the interspaces between two buses (headway), and searching time to

find a car park and walking time to distinction in alternative travel modes.

As mentioned earlier, the mixed logit model is based on individuals like the

agent-based simulation model. However, the analysis at the aggregated level

is different from that of an agent-based simulation model. The disaggregated

econometric model is probabilistic; therefore, its usage has to be made in a

proportional term as they yield the probability of choosing each alternative and

14The probability of choosing one option between two is not affected by adding any other
third option (Arrow, 1951). Also see footnote on page 89
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do not indicate which one is selected (Ortúzar and Willumsen, 2001, p.221).

For example, the expected number of people using a certain travel option

equals the sum over each individual’s probabilities of choosing the alternative:

nx =
∑
N

P x (1.3)

where nx is the number of individuals choosing x and P x is the probability

of choosing x in N population. This is the transformation of probability to

proportion, and population is treated as a continuous variable. However, in re-

ality, the population is the summation of discrete entities, which is determined

stochastically and hence not a continuous variable. If the interaction effect

between individuals is insignificant, the outcomes from the mixed logit can be

the same as those of agent-based modelling, but if it is significant, the mixed

logit model is expected to produce biased outcomes. Under these conditions,

conventional approaches which conduct analysis solely with discrete choice

models have the neo-classical economics assumption that “the summation of

local optima forms a general optimum”.

1.4.2 Four stage model

The case study of this thesis is about transportation modelling; therefore, it is

important to mention the four stage model, which is most commonly practiced

in this sector. The four stage model was first used in the US in the 1950s (Oi

and Shuldiner, 1962) and is composed of 1) trip generation (and attraction),

2) trip distribution, 3) mode split, and 4) assignment (McNally, 2000) (Figure

1.3)15.

The first stage measures trip frequencies and provides the propensity to

15Although this is the most common order, the variants of the four stage model exist
in which mode split is undertaken prior to trip distribution or the mode split and trip
distribution stages are undertaken simultaneously
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travel, i.e. trip production (the number of trips from origin i, Ti ) and trip

attraction (the number of trips to destination j, Tj). This will typically be

a function of the characteristics of origin zone i (Oi), the characteristics of

destination zone j (Dj) and the overall cost of travel (C). The second stage

distributes the trip production to match the trip attraction, thus linking trips

between origin i and destination j (Tij). This distribution is based on under-

lying travel impedances including travel time and costs (Cij). The third stage

is the mode split model which determines the number of trips between i and j

by mode m (Tijm). The fourth stage assigns the mode split to specific routes

k (Tijmk).

Originally, four stage models had a sequential structure although the mode

split stage could be either before or after the distribution stage (as in Fig-

ure 1.3). Today such models have feedback loops (as illustrated by Figure

1.3) and hence the four stages can be estimated and applied simultaneously.

The feedback loops in the four stage model aims to achieve convergence or

an equilibrium status between demand and supply as in a system dynamic

model (Gilbert and Troitzsch, 1999a). Although convergence is not guaran-

teed or takes days, four stage models are feasible even in the largest of the UK

multi-modal study areas, including the Central Scotland Transport Model16

(Department for Transport, 2003, §1.4.7). Moreover, the model in Figure 1.3

is a basic model, but more complex models may consider the importance of

land-use, travel time, incremental change to the base, etc. (Bates et al., 1991).

The conceptual diagram for the agent-based model in Figure 1.2 can be par-

tially compatible to the four stage model in Figure 1.3. The mixed logit model

covers the third stage (mode split) and partially covers the first stage (trip gen-

eration). The Markov queue model covers the fourth stage (assignment) since

it assigns the demand of Auto to the parking networks of the Valley. The agent

16This covers much of Scotland from the English border to north of Perth
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Figure 1.3: Four stage model with feedback loops
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based model does not have a second stage (trip distribution) as the destination

is assumed to be fixed. However, the two feedback loops of the agent-based

model and the aggregated four stage model are essentially different.

Generally, the feedback loops in the four stage model occur at a system

level17, so that this feedback loops the interactions of modelling stages, but

not the interactions amongst agents. Moreover, this system dynamic feedback

loop cannot show emergent phenomena. In contrast, the feedback loop in the

agent-based simulation occurs at the individual level, but not at the system

level, i.e. many discrete choices and feedback loops are conducted in one cycle.

Also, the feedback loop of the agent-based simulation model aims at pre-

senting emergent phenomena rather than convergence (Epstein and Axtell,

1996). For example, in the case of this thesis, the convergence is not expected

due to unforeseeable interaction amongst agents (See page 15). More specifi-

cally, the unforeseeability is handled with a Minority Game algorithm, so that

convergence is not expected. In a similar manner when a stock market is rep-

resented as a Minority Game it does not achieve an equilibrium state due to

uncertainly (Arthur, 1994).

The difference between the feedback loop of system dynamics and that

of agent-based simulation is illustrated in Parunak et al. (1998) and Gilbert

and Troitzsch (1999a, pp.12–3) and summarised in Table 1.2. Besides these

differences in the feedback loops, the case study of this thesis does not require

all four stages. The agent-based modelling at the Derwent Valley focuses only

on the congestion levels in parking areas and the number of private car visitors.

In other words, the case study is not interested in visitors’ other destinations

if they do not come to the Valley. Trip distribution is not discussed and

17TRANSIMS (http://www.ccs.lanl.gov/transims/) can be considered as a four stage
model carrying out feedback loops at disaggregated levels. However, this type of models is
different from the conventional four stage model. Actually, TRANSIMS claims that it is an
agent-based simulation system in its web page.
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Table 1.2: Comparison between feedback loops in system dynamics and
agent-based modelling

Simulation Feedback Communication Number Aim
type levels in agents of agents

System dynamics System No 1 Static equilibrium
Agent-based model individual Yes Many Dynamic phenomena

only a fraction of trip generation is discussed as a part of discrete choice. In

conclusion, the mechanism of the four stage model is different from that of the

agent-based model. The scope of the four stage model is too large for the case

study; therefore, the four stage model is not discussed after this section.

1.4.3 Minority Game

This study uses an agent-based simulation of discrete choice known as the Mi-

nority Game. Arthur (1994) started problem with the El Farol model, which

is also known as the Minority Game today, after he was inspired by the phe-

nomenon of the bar “El Farol”. El Farol is located in Santa Fe, the U.S.A,

and offers Irish music on Thursday nights. However, the offer is held only if

the bar is not crowded18. Therefore, people who go to El Farol on Thursday

nights are playing the Minority Game - i.e. they may be better off coming to

El Farol if the bar is not crowded, otherwise, they will be better off staying at

home. As you see, the problem described above is a discrete choice, i.e. go or

not go to the bar, and it is about congestion. Thus, this problem is applicable

to the situation in the Upper Derwent Valley.

In the situation of the Upper Derwent Valley, visitors are better off trav-

elling by private automobile when they can park at their target parking areas

since it is their initial intention. Also, visitors arriving by bus will be glad

18He set the crowdedness is the condition that 60% of regular customers go to the bar in
his model
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that they chose the bus option if there are no empty spaces in the parking

areas. These two situations indicate that the visitors are playing the Minority

Game, i.e. visitors are better off choosing the less congested option. On the

other hand, from the interviews conducted in the summer of 2003 and 2004,

some people said that they would not bother to come to the Valley and would

go elsewhere if the new policy tools were put into effect. Therefore, the visi-

tors are able to choose the third option, which is not going to the Valley, in

addition to the two Minority Game choices. Overall, the Minority Game in

the Upper Derwent Valley is a multinomial discrete choice of Auto, Bus, and

Cancel. Further description of the Minority Game is given in Chapter 2.

1.4.4 Learning model

Although the Minority Game algorithm contains some aspects of learning and

perception, this thesis does not focus on these issues. Thus, learning models

for transportation mode choice and some aspects of learning and perception

in the Minority Game are briefly reviewed here.

The learning model is generally divided into two sub-categories namely

explicit updating models and non explicit updating models (Jotisankasa and

Polak, 2005). The explicit models have the modules of perception updating

and decision making. The decision making component in the explicit models

are often implemented from the discrete choice analysis, which is discussed in

this thesis. For example, van Berkum and van Der Mede (1998) use a logit

model to analyse a route choice and Jha et al. (1998) use a nested logit model

to analyse a combined route and departure time choice.

Several perception updating approaches have been considered in the ex-

plicit models for transport analysis. First, the weighted average approach

assumes that travellers formulate the perception of the travel time based on
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the weighted average of past travel times (Jotisankasa and Polak, 2005). Sec-

ond, the adaptive expectation approach assumes that travellers update their

perception of travel time based on the difference between the actual and the

perceived travel times from the previous trip. Third, the Bayesian updating

approach was successfully implemented in some studies (Jha et al., 1998; Ben-

Akiva et al., 1999). This approach focuses more on random variables of the

mean travel time and the experienced travel time, which indicate the confi-

dence levels about the travel information. Therefore, the Bayesian updating

approach can consider the confidence about information, i.e. variance, more

than the other two approaches.

Since this stochastic agent-based modelling is based on discrete choice

analysis as shown in Figure 1.2, the discrete choice model is considered as

an explicit decision making component and another module namely the Mi-

nority Game can be considered as a learning component. The adaptive expec-

tation approach is most popular amongst the three; however, the agent-based

model developed in this thesis may be best characterised by the weighted av-

erage approach. One of the major criticisms of this approach is the ambiguous

assumptions on the length of the distribution of memories (Jotisankasa and

Polak, 2005). These assumptions are briefly tested with an on-line game in

Chapter 4.

In contrast, the non explicit models do not have an explicit division be-

tween perception and decision making parts. Moreover, they usually use more

innovative approaches instead of relying on discrete choice analysis. For exam-

ple, Arentze and Timmermans (2003) use the reinforcement learning, which

controls and adjusts an agent’s action to the environment through trial-and-

error processes without supervision, showing a correct action to the specified

environment state (Sutton and Barto, 1998). Also, Nakayama and Kitamura

(2000) propose a model based on IF-THEN inductive psychology with genetic
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algorithm and the concept of memory, which is described in Chapters 2 and 3.

These approaches are similar to the Minority Game component of this thesis.

Therefore, the learning process of this Minority Game can be also categorised

as a non explicit approach. As it will be explained further in the next two

chapters, the best strategy of agents to play the Minority Game are updated

by reinforcement learning while the perception as selection of memory is for-

mulated in the Minority Game.

In conclusion, this agent-based model has a learning and perception mech-

anism. The innovative Minority Game handles the learning and perception

mechanism and most decision making processes arise from the discrete choice

model. The best explanation of the learning model in this thesis is that the

discrete choice analysis is explicitly separated from the learning component in

the Minority Game while the results of the discrete choice models are feedback

to the Minority Game together with other results from the parking network

and parking choice models (i.e. explicit approach) (Figure 1.4). The Minor-

ity Game passes the selected memories and strategies in the Minority Game

run discrete choice models (Chapter 3), so whole Minority Game algorithm is

considered as a learning and perception mechanism.

However, choosing the best strategy is, in fact, a decision making phenom-

enon, so that the Minority Game component can be still viewed as a part of

decision making component (i.e. non explicit approach). Although the model

is initially based on a weighted average of the last n memories, reinforcement

learning and inductive psychology in the Minority Game mean that choosing

the best strategy involves decision making processes in a non explicit man-

ner. Therefore, the double loop with the label ‘Choosing the best strategy’ in

Figure 1.4 is the non explicit learning model mechanisms.

The discussion between explicit and non explicit learning models is difficult

in this case due to the innovative approach of Minority Game and the nature
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Figure 1.4: Leaning model with discrete choice model and Minority Game.
Normal lines are decision making processes and dotted lines are learning
and perception processes. Choosing the best strategy can be considered as
the decision making as well as the learning mechanisms, i.e. non explicit
learning.

of agent-based modelling, i.e. combining many modules together. Nonetheless,

the Minority Game mechanisms are explained further in Chapters 2 and 3.

1.4.5 Modelling platform for agent-based modelling

The agent-based simulation model is programming oriented, and usually has

to be written in one of the object-oriented programme language, such as Java,

C++, Python, etc.. However, there are various toolkits (i.e. collection of

classes) available to help the development of agent-based models. Some per-

sonal criteria for the platform and toolkit selection were:

• Flexibility for non-abstract and interdisciplinary modelling

• Based on a popular programme language for better learning materials

and development tools

• Widely distributed platform for reliability and efficiency
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Table 1.3: Sources and developers of the selected simulation toolkits

Name Web site Organisation

RePast http://repast.sourceforge.net/ University of Chicago
Swarm http://www.swarm.org/ Santa Fe Institute

• Under open source project for long-term development and easy coopera-

tion with other researchers

These criteria are for long-term usability. Therefore, short-term criteria, such

as non-steep learning carve, are not seriously considered. Most of the simu-

lation platforms and toolkits were excluded because of the first and second

criteria. For example, GUI (e.g. drag-and-drop interface) based platforms are

easier to start, but they are less flexible so the platform may not handle all

concepts needed to be modelled on the unique case of the Upper Derwent

Valley, i.e. the model is too abstract. Some popular platforms use less pop-

ular programming languages, for example, CORMAS19 uses Smalltalk. After

these investigation, Java20, which is one of the most popular object-oriented

language, was selected. Then, the two most popular Java toolkits were consid-

ered: RePast (REcursive Porous Agent Simulation Toolkit) and Swarm (Table

1.3).

Swarm is originally written in Objective-C, but researchers can also model

simulation with Java language by using Java Swarm, which is a Java layer

running on top of the Swarm kernel (Tobias and Hofmann, 2004, § 2.4). More-

over, Swarm is probably the most popular, most widely distributed, and most

flexible platform. RePast is a Swarm like multi-agent platform, but written

purely in Java and used more in the field of social simulation than artificial

intelligence (Collier et al., 2003). After an evaluation period, RePast was se-

19http://cormas.cirad.fr/
20http://www.java.com/
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lected as the platform of all simulation processes due to social science oriented

features and potential to future development.

1.5 Outline of the thesis

The outline of thesis is presented in Table 1.1 and the rest of this thesis is

organised in the following way. The theoretical part starts with the addi-

tional information about the Minority Game, which is the kernel of this project

(Chapter 2). The next chapter in this part discusses how congestion can be

described as a game and why it is necessary to include the idea of the Mi-

nority Game into the problem (Chapter 3). Then, this chapter defines a new

stochastic Minority Game as the combination of discrete choice analysis and

conventional Minority Game. Following this, The distribution of memories is

figured out while the mechanism of the stochastic Minority Game is briefly

tested by an online game (Chapter 4).

The practical part starts with the background information about practical

modelling issues (Chapter 5). The second chapter in this part is about the

econometric analysis on the parking congestion in the Upper Derwent Valley

and develops multinomial discrete choice models for a mode choice and a park-

ing location choice (Chapter 6). This chapter also analyses the characteristics

of visitors. The third chapter explains the Markov queue model about the car

movements, which is the source of dynamic congestion process. Then, Markov-

queue-like microsimulation is developed (Chapter 7). The last chapter of the

practical part combines all four models including the Minority Game, which is

discussed in the theoretical part by agent-based modelling (Chapter 8). In the

final chapter, this thesis finishes with the main conclusions including discussion

on the question raised in the introduction, some recommendations for policy

makers, thoughts about future research, and closing comments (Chapter 9).
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Part II

Theoretical part
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Chapter 2

Background of the Minority

Game and the El Farol Problem

2.1 Introduction

Rather than simple article reviews, this background chapter about the Minority

Game explains the two replica models of the previous Minority Game while

former works in this field are discussed. Since the Minority Game is a core

module of this thesis, it is important to explain this concept in detail.

2.2 Main references and source codes to repli-

cate the El Farol / Minority Game model

This chapter tries to replicate two El Farol / Minority Game models with

currently available information. The first duplicated model is the original El

Farol of Arthur’s (1994) model and the second model is Bazzan et al.’s (2000)

model, which took into account agents’ characteristics in the transport sector.

To start to replicate Arthur’s (1994) model, free Swarm source codes of the
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El Farol1 were examined. These source codes were distributed by Prof. Paul

Johnson, Department of Political Science, University of Kansas. The codes had

not been modified for the last four years, and not having been tested properly

contained significant bugs; furthermore, they had been programmed without

the RePast tool kit2. Therefore, these codes were not used at all for this

thesis; however, they were useful to understand the structure and mechanism

of the Minority Game simulation, which were not revealed in the two articles

mentioned above. In addition, Lofton’s (2000) working paper was also valuable

to understand the source codes since the codes were not documented at all.

Unfortunately, the working paper is no longer available from the URL link as

stated in the bibliography.

2.3 Original El Farol model (Arthur, 1994)

As mentioned in Section 1.4.3, the regular customers to the El Farol bar are

better off if the bar is not crowded since the bar offers Irish music only in this

condition. It is impossible to find out the exact number of people coming to

the bar in advance. So, regular customers to the bar have to guess if they

are better off going to the bar or staying at home from their experience - i.e.

inductive but not deductive rationality. In this paper, the author mentions two

reasons why perfect / deductive rationality does not work, and how bounded /

inductive rationality works in Minority Game situations (Arthur, 1994, p.406):

1. “Beyond a certain complicatedness, our logical apparatus ceases to cope,

our rationality is bounded”, and

2. “In interactive situations of complication, agents cannot rely upon the

other agents they are dealing with to behave under perfect rationality,

1http://lark.cc.ku.edu/∼pauljohn/Swarm/MySwarmCode/El Farol/
2http://repast.sourceforge.net/
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and so they are forced to guess their behaviour”

He explained inductive reasoning, which could be understood as “localised

deductive reasoning”. This reasoning is applicable not only for real customers

in the El Farol bar, but also for computer agents in the Minority Game. In a

given environment of the El Farol simulation, computer agents always test hy-

potheses if their prediction is correct. If the prediction is incorrect, the agents

choose an alternative strategy to predict the number of customers coming to

the bar on the following Thursday night. Without deductive methods, the

author showed that agents were reaching close to the optimal ratio, which was

40/60 = ‘Stay at home’ / ‘Go to bar’, at a macro level. On the other hand, the

agent number coming to the bar never converged into one point and always

oscillated around the optimal ratio.

2.3.1 Explanation of key classes in this simulation

In this section, the main classes, which were used for the duplicated simula-

tion, are explained. It is not necessary to understand the relationships of these

classes in detail, but understanding these will help readers to understand the

successive chapters. In brief, object-oriented programmers do not actually pro-

gramme objects, but programme classes, which define the structure of objects.

A class has its own data, methods, and other classes (objects) and its objects

are produced from the class. Therefore, if a class of agents is designed, the

millions of agent objects are easily duplicated from the class, i.e. the relation-

ship of class and object is like a foundry mould to produce many plastic dishes.

One class may contain other classes and it is not necessary to know how the

methods of the other classes work. For example, an agent class may have

strategy classes and the agent class does not need to know how each strategy

class proceeds in decision making, but needs to know what the result of the
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decision making is. In other words, each class encapsulates its own problems

for itself to solve larger and more complex problems at a macro level.

The duplicated El Farol simulation model has 49 classes, so only four key

classes are explained here (Table 2.1). It should be kept in mind that these

classes may not be the same as those of the original El Farol model since the

information was limited. The main idea of the duplication is to understand

the concept of El Farol model to develop my own Minority Game model rather

than just to rebuild the model in Java and RePast. Even if some differences

exist, the concepts of key classes should remain the same. As shown in Table

2.1, Model is the root class of the simulation model and has a number of agents

and a bar. Then, each agent has a number of strategies.

A simulation process of the El Farol model is described as a pseudo-code

in Figure 2.1. Each agent first generates a subset of the possible strategies

individually, and then chooses the best strategy to make a decision. In other

words, an agent just follows the decision of the best strategy and the best

strategy is determined by trial-and-error processes. The bar is notified how

many agents come there at every time step, and all processes are controlled by

the model. There are 21 types of strategies in the model (Table 2.2), so that

this is assumed as the possible strategies for the agents in this model3

2.3.2 Results and discussion of original El Farol

The important parameters set for this simulation were:

• The number of agents is 100

3Even without considering trends and average attendances, all possible strategies are
immense, i.e. 22M

where M is the size of agent’s memory. Read Challet and Zhang (1997,
p.1) for more explanation. For example, if an agent remembers the past three attendances
to the bar, the number of the possible strategies is 256 (223

= 256). This number is very
fast increasing with the size of memory. Therefore, the pre-selected 21 strategies were used
for this example.
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Table 2.1: Key classes in duplicated El Farol model. NA is the number of
agents in the model and NS

i is the number of strategies in an agent i.

Name No. objects Possess Description
Model (M) 1 A, B Root class managing the schedule of

simulation
Agent (A) NA S Regular customer making a decision if

it goes to bar
Bar (B) 1 – Class storing the history of agent

attendance to the bar

Strategy (S)
∑NA

i=1 NS
i – Strategy each agent use to make a

decision

Table 2.2: 21 strategies in duplicated El Farol model

ID Description
0 Go to the bar randomly without considering the history
1 Assume to be the mirror image around mean of last week’s
2 Assume to be the mirror image of attendance in two weeks ago
3 Assume the attendance is the same as the trend in the last five weeks
4 Assume trend in last three weeks bounded by 0 and total number of agents
5 Assume the attendance is the same as the trend in last eight weeks
6 Assume the attendance to be 110 minus last week’s attendance
7 Assume the attendance is the same as the attendance five weeks ago
8 Go to the bar whatever the history is
9 Assume the attendance is the same as the overall average in whole history

10 Assume the attendance is the same as the moving average of attendance
11 Assume the attendance is the same as the average of past five weeks
12 Assume the attendance is the same as the average of past two weeks
13 Assume to be the mirror image of moving average
14 Go to the bar randomly, but different from Rule ID 0
15 Assume the attendance is the same as the average of past four weeks
16 Assume the attendance is the same as eight weeks ago
17 Do not go to the bar whatever the history is
18 Assume to be the mirror image of the average of past three weeks
19 Assume same as ten weeks ago
20 Assume the attendance is the same as the attendance two weeks ago
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01 Start initialising a model
02 Setting up the initial values of parameters
03 End the initialisation

04 Start building the model
05 Building the Bar
06 Building history of attendance
07 Building strategies
08 Building agents
09 End building

10 Repeat for each time step
11 Start setting a step
12 Check the last attendance number from Bar’s memory
13 Check all strategies if they are successful
14 Make sure no one is at the bar, yet
15 End setting a step

16 Start the step of agents
17 For each agent from population
18 Choose the best active strategy to predict
19 Make decision if he goes to the bar
20 Bar notice the agent arrives
21 End ‘for’ loop
22 End the step of agents

23 Start closing this step
24 the Bar add the attendance number in its memory
25 End closing this step
26 End repeat for each time step

Figure 2.1: Pseudo-code of simulation procedure in duplicated original El
Farol. In the main simulation step of agents (lines 16-22), each agent first
chooses the best locally available strategy from a set of active strategies
(line 18), which are randomly assigned to each agents at the beginning of
simulation (line 08) and fixed during the simulation process. Then, the
agent decides if they go to the Bar El Farol or not based on their past
experience (line 19). The attendance of the agent is informed to the Bar
(line 20). At the end of each time step, the total number of agents arriving
at the bar is reported to the main class of the model (i.e. Model), which
produce the graph of the output (line 24).
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• The number of active strategies that each agent possesses is 5

• The history length, which stores the number of past attendances, is set

to 20

• The threshold level of crowdedness is 0.6, i.e. when the bar is filled by

60 agents, the bar does not offer the music.

The result of this duplicated model was the same as the original result

and showed the emergent property Arthur revealed. The attendance number

of agents to the bar oscillates randomly around the target attendance of 60

(Figure 2.2). There are two important messages from this result. The first one

is that the system achieved a Nash equilibrium4 at macro level:

“a mixed strategy of forecasting above 60 with probability 0.4 and

below with probability 0.6, which would engender a mean attendance

of 60 individuals, is a Nash equilibrium when the situation is viewed

in terms of game theory.” (Fogel et al., 1999, p.143)

The second one is that although the system seems to have a Nash equilibrium at

the target attendance of 60, this is not because of agents’ co-optation (Challet

and Zhang, 1997, p.3). Each agent acts individually and selfishly and tries to

select the best strategy to win each game.

When an economist hears about El Farol problem, s/he may say that “The

optimal strategy agents choose is pseud-optimal. So, I will just stay home to

maximise my utility.” His/Her answer is correct if one uses the deductive

reasoning as a conventional Nash’s game theory. Each agent has the best

strategy to predict the attendance number, but there is no real optimal or best

strategy to win this game. For example, the random attendance strategy to the

bar (Strategy 0 in Table 2.2) will be successful about 60% of the time, i.e. that

4A situation is a Nash equilibrium if no agent has incentive to deviate from its choice
given the other players do not deviate (Rasmusen, 2001, p.26).
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Figure 2.2: Attendance number of Agents

Figure 2.3: Strategies used by
all agents through the simulation

Figure 2.4: Successful Strate-
gies through the simulation

Figure 2.5: Success number of
Agents

Figure 2.6: Residual of success
number of Agents
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is the probability when attendance is over 60 as mentioned in the quotation

above. The rest of the strategies will also achieve similar success rates (Lofton,

2000, p.11). The result of this simulation process proves the pseud-optimality.

Figure 2.4 shows that the numbers of strategies that successeded5 at the end of

a simulation process6 are not varied as much as the numbers of strategies used

by agents (Figure 2.3). The different patterns between the two figures are due

to the bounded rationality and the problem of the local and global optimal,

i.e. agents choose the best local strategy from their subset of the strategies,

but this best strategy may not be the same as the best possible strategy in

the simulation world. Because of this trial-and-error reasoning, the successful

numbers of agents are not equally distributed (Figure 2.5). Some agents win

the game more than some other agents. This movement is more clearly shown

when we look at residuals from the trend (mean) of the successful numbers

(Figure 2.6). The trend of residuals indicates that successful agents will be

more likely to be successful. Similarly, unsuccessful agents will be more likely

to be unsuccessful. In other words, the Minority Game including El Farol is

symmetric as a Nash equilibrium shown at a macro level, but the games are

not symmetric for agents (Savit et al., 1998), i.e. the distribution of wins is not

equal between agents. The symmetrical nature of the Minority Game could be

unclear in this original El Farol game since this game did not have any payoff

function, and the threshold of the congestion level was 60%, but not 50% of the

population. However, this symmetric nature remains in any Minority Game

regardless of the threshold level (Challet and Zhang, 1997, p.4). In conclusion,

the original El Farol was the beginning of the paradigm ‘Minority Game’, and

the game showed how perfect rationality was not necessary to win this game.

5If the predicted choice (i.e. either go to the bar or not) results in the minority side, the
strategy succusseded.

6Successful strategies are countered whether or not the strategies are used by an agent.

43



2.3.3 Other work after Arthur’s original model (1994)

After the original work, there were several improvements in the Minority Game.

In fact, the original model was not called ‘the Minority Game’ when Arthur

started this study in fact it was Challet and Zhang (1997) who re-phrased

this problem as the Minority Game. Having in mind a general outline of

the application to stock markets, they shifted the threshold of binary choice

to 50/50 and focused on the oscillation of the attendance number. In the

finance sector, buyers can be sellers, simultaneously and the minority side

is the winning side. If there are more sellers than buyers, the buyers can

buy stocks at lower prices. Similarly, if there are more buyers than sellers,

the sellers can sell the stocks at higher price. Moreover, they introduced the

concept of memory, which was the length at which each agent remembered

past experiences.

Following this, de Cara et al. (2000) studied the Minority Game with per-

sonalised memory rather than global information. Edmonds (1999a) and Baz-

zan et al. (2000) studied characteristics of agents in different approaches. Liu

et al. (2004) introduced the horizon of strategy successfulness. The horizon

is related with the adaptability of agents, since a long horizon makes agents

consider too much historical information, which may not be relevant to the

current situation. More works have been done in this field, but these are the

ones that are most relevant to the Minority Game in this thesis. In the next

section, the model of Bazzan et al. (2000) is duplicated. It is not because this

study was the most important work after the original El Farol problem, but

because this study considers the application to the transportation sector.
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2.4 Minority Game with characteristics (Baz-

zan et al., 2000)

In the original El Farol model, distributing subset-strategies to each agent was

purely random, so that the agent did not have a revealed characteristic. The

Minority Game with characteristics is one step toward the phenomena observed

in the real world. Bazzan et al. (2000) categorised strategies into higher-

levelled rules and named them as characteristics or personalities of agents.

Although the Minority Game in this thesis has a different approach to define

the characteristics of agents, it was worth to replicate Bazzan et al.’s (2000)

model to think about the practicability of his approach.

2.4.1 Features of the model

Most parts of classes in Table 2.1 remain the same for this duplicated model.

The major change was that strategies were categorised into characteristics.

In consequence, the difference between the model in the last section and the

current model are as follows:

• The strategies of agents are broadly categorised into nine characteristics

(Table 2.3).

• The characteristics of each agent are assigned at the beginning of a sim-

ulation process and do not change throughout the process.

Besides these features, the backdrop of the simulation was changed to the

transportation sector. Their motivation to use the Minority Game was to

forecast a binary route choice based on congestion on the roads. Therefore,

‘Go’ means ‘going via the main route’ and ‘Not’ means ‘not going via the main

route’, i.e. ‘going via an alternative route’.
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The first feature means that some strategies are categorised into one of

nine characteristics although other strategies represent their own character-

istics. For example, in the case of two memories (i.e. agents remember the

number of agents choosing main route last two times), there are four possible

outcomes (two memories and two possible choices, Go / Not, = 22) and there

are 16 possible agent’s strategies (four outcomes and two agents’ actions, Go

/ Not, = 42). Then, if a characteristic is G∨ in Table 2.3, the agent uses 15

strategies. So, an agent with the characteristic of G∨ chooses “Go” when the

choice “Go” is unsuccessful in the last two periods. On the other hand, if

its characteristic is N, the agent’s strategy is only one, which is the one re-

jected by the characteristic of G∨. The number of strategies used by other

characteristics is shown in Table 2.3.

Table 2.3: Description of the characteristics

ID Description of characteristics No. of strategies
G Go regardless of the history 1
N NOT go regardless of the history 1
G∨ Go if it has won at least one game 15
G∧ Go if it has always won 8
N∨ NOT Go if it has won at least one game 14
N∧ NOT Go if it has always won 13
P choose the route that won in the previous game 1
W choose the route that lost in the previous game 1
R choose a route randomly 15

The second feature was the result of simplifying the problem and the back-

ground of the current model. Edmonds’ model (1999a) tried to describe ac-

tual human behaviour by using communication and learning to observe the

emergence of heterogeneous characteristics in the society. This approach was

complex and needed large computational power, Edmonds’ model could imi-

tate this with solely ten agents. However, ten agents were not suitable in the

context of Bazzan et al.’s model, i.e. congestion on road traffic. Moreover,
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ten agents are not large enough to reflect the situation of the Upper Derwent

Valley.

2.4.2 Results and discussion of the Minority Game with

characteristics

The important parameters set for this simulation are:

• The number of agents is 901,

• Agents remember the last two events, i.e. the memory length is 2.

• The threshold of the congestion level is 50%, so the game is now clearly

symmetrical.

The parameters of active strategies disappear in this model since the numbers

of strategies agents possess are different and it depends on their characteristics.

Agents sizes are evenly distributed among nine characteristics7 (i.e. 100 × 9 +

1).

Figure 2.7: Number of Agents on the main route

The number of agents on the main route oscillates randomly around the

threshold congestion level of 450 (Figure 2.7). This oscillation shows that

this Minority Game also possesses a Nash equilibrium at a macro level like

7Only G has 101 to make odd number of agents
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Figure 2.8: Successful characteristics through the simulation

the original El Farol model. However, the oscillation has a discovered pattern,

which is due to the smaller memory size and the variation of strategies. Agents

with the same characteristics react in the same manner since the decision

making is based on conventional IF-THEN rules, but not fuzzy or stochastic

approaches8. For example, if going via the main route is successful in the past

two periods, all 100 agents with characteristics G∧ go via the main route this

time. There are similar manners for other characteristics. Therefore, the trend

in agent movements is the repetition around a few levels rather than a random

walk9. Focusing on the successfulness of characteristics, some characteristics

and consequently some agents are more successful than others (Figure 2.8);

therefore, the game is not symmetrical among agents as expected from the

results of the previous Minority Game. In conclusion, this duplicated Minority

Game with characteristics showed the possibility of the Minority Game in

transportation research although this research was only at a theoretical level.

8These approaches are explained in detail in Section 5.4.2 (Chapter 5).
9The random walk is a process produced by the sequence of countless discrete levels.
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2.5 Minority Game in this thesis

As mentioned in the last chapter, the Minority Game in this thesis is the

mode choice to visit the Upper Derwent Valley based on the congestion level

in the parking areas. Since this Minority Game is used to analyse a real world

problem, the setting of the game, such as characteristics and decision making

processes, has to be realistic. The characteristics of agents were implemented

in the last section; however, this approach is unlikely to be implemented at a

practical level. Those travel-related characteristics (e.g. G∧ etc.) are usually

unobservable directly (Ben-Akiva et al., 2002). The more practical alternative

approach is to use observable characteristics such as the age of the traveller as

an indicator of the travel characteristics. These characteristics of visitors to

the Upper Derwent Valley are revealed in Chapter 6 and integrated into the

Minority Game by an agent-based simulation model in Chapter 8.

Similarly, the IF-THEN rules as a decision making mechanism and the

strategy of agents have not been tested to justify their mechanisms and usage

in the previous studies. For example, in Arthur’s (1994) agent-based model, the

behaviours of regular customers to the El Farol bar were defined by IF-THEN

rules, but the rules were not supported by any real world observation. In this

thesis, the Minority Game is not a conceptual model, so that the behaviour of

agents and strategies have to be tested and reflected reality. The problem of

the IF-THEN rules is altered by implementing the random utility theory and

discrete choice analysis. The justification of the implementation is explained in

Chapter 5. The rest of the chapters in the theoretical part discuss the possible

and practical strategies for the Minority Game in the Upper Derwent Valley.
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Chapter 3

Congestion as a game in the

Upper Derwent Valley

3.1 Introduction

This chapter describes the situation of the Upper Derwent Valley from a game

theoretic viewpoint as well as that of the Minority Game. The main purpose of

this chapter is to find suitable strategies of the Minority Game, which reflect

the situation of the Upper Derwent Valley. The complexity of the parking

congestion in the Upper Derwent Valley is first discussed in terms of conven-

tional game theories and then the discussion moves to the Minority Game.

This transition shows how the conventional game theories are connected with

the Minority Game. Additionally, the Minority Game is eventually combined

with another economic concept namely discrete choice analysis.

Theoretical arguments, which do not reflect reality, are not the purposes

of this thesis. However, some situations in this chapter are not supported by

any observation. These non-supported situations are purely to introduce real

complex situations and will not be used in the subsequent chapters. Moreover,

this chapter starts using the terms, ‘agents’ and ‘visitors to the Upper Der-
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went Valley’, interchangeably. The term ‘visitors’ is still dominating, but they

describe the same subjects.

3.2 Simplistic deterministic game

Transport mode choice has been studied for many decades (Baumol and Vinod,

1970; Winston, 1985; Hurley and Petersen, 1994); however, most studies have

considered only the situation with a single agent, i.e. no interaction among

transport users. In reality, competition among users exists. For instance, Hau-

gen and Hervik (2004) mention an example of competitive game between an

automobile transport and a boat transport for Norway’s salted cod exporters

(game players). The situation is a prisoner’s dilemma1 (Fudenberg and Ti-

role, 1991, p.9). As a road becomes crowded, the road cannot be fully utilised;

therefore, the cost of road transport rises. More importantly, these two modes

are interdependent of each other since choosing the boat transport will make

other exporters choose the auto transport as the road becomes less congested.

Similarly, choosing the auto transport will make other exporters choose the

boat transport as the road becomes crowded. This situation is similar to the

current situation in the Upper Derwent Valley, and its utility matrix could be

like Table 3.1. As explained in Section 1.4.3, there are three possible options

for visitors to the Upper Derwent Valley, namely Auto, Bus, and Cancel. To

simplify the problem, the third choice, ‘Cancelling the trip’ is omitted at this

stage. If both visitors (Table 3.1) choose Auto, the parking areas are more

crowded so that the utilities of both visitors are equally small. If both visitors

choose Bus, the visitors enjoy less traffic, noise, and emissions in the Upper

1Prisoners are two suspects charged with complicity relation, but are not strict prisoners.
If one confesses and the other does not confess, the crime becomes heavy only for the latter.
If both keep negating, the crime becomes light for both. If both are confessed, the crime
becomes medium. Because the crime becomes heavy if the other confesses, both suspects
think that the other party might have confessed mutually. Therefore, both suspects confess
and do not end up choosing the optimal choice, ‘keep negating’.
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Table 3.1: Current utility matrix between Auto and Bus

Visitor 2
Auto Bus

Visitor 1
Auto

HHHHHH3
3 HHHHHH5

2

Bus
HHHHHH2

5 HHHHHH4
4

Derwent Valley. In addition, the bus service as a public transportation ser-

vice can be improved as more visitors choose the option due to the economies

of scale (Mohring, 1972). Therefore, the summed utilities can be the high-

est when both visitors choose Bus. However, any visitor has a possibility of

increasing his / her utility by changing the option from Bus to Auto in the

situation of Bus & Bus. If not many visitors come by Auto, a visitor coming

by Auto does not need to search for a parking space or to walk to the Informa-

tion Centre as the visitor is likely to park at the Information Centre. On the

other hand, in this case, there is a side effect on innocent bystanders coming to

the Valley by bus, i.e. the Upper Derwent Valley is experiencing more traffic,

which generates noise and emissions. Moreover, the bus service may not be as

good as it used to be in terms of costs and operation frequencies due to the

smaller economies of scale. Therefore, the utility of visitors by Auto is higher.

In contrast, the utility of visitors by Bus is lower.

Therefore, the current situation in the Valley can be a game:

• Go by auto = defect

• Go by bus = cooperate

• non-zero-sum game

The Nash equilibrium in the current situation seems to be ‘All defect’ since

regardless of what others choose, the equilibrium ends up to be Auto & Auto.
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As Steiner and Bristow (2000) assumed, the size of a travel group is usually

considered an attribute to an agent, i.e. trip leader owns this attribute. There-

fore, if we do not consider car sharing, the situation cannot be cooperative since

visitors to the Upper Derwent Valley are complete strangers to one another.

More importantly, the problem in this situation is not to gain the highest so-

cial welfare, which can be Bus & Bus. This could be a reason why there is no

practical bus service running through the Upper Derwent Valley today. The

utility of Auto is high because of external costs, which are generated by the

option, are not paid by the users of the option. Therefore, a policy tool is

needed to consider the external costs into the utility of Auto and eventually

alter the equilibrium point.

A road user charging scheme and a park & ride scheme will reduce the

utility of Auto and increase the utility of Bus, so the Nash equilibrium could

be altered as in Table 3.2. A toll fee reduces the utility of Auto and a frequent

Table 3.2: Utility matrix between Auto and Bus after implementing a road
user charging

Visitor 2
Auto Bus

Visitor 1
Auto

HHHHHH1
1 HHHHHH2

3

Bus
HHHHHH3

2 HHHHHH4
4

bus service improves the utility of Bus. Therefore, no matter what other

visitor chooses, the equilibrium will end up as Bus & Bus, which is known as

a dominant strategy2 (Fudenberg and Tirole, 1991, pp6–11).

This section showed how the current situation and the situation after im-

plementing schemes were expressed as a game. However, this is an optimistic

2A dominated strategy is a strategy, that yields a higher payoff than the other strategies
regardless of the opponents’ strategies.
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way to view the game. In reality, the situation of the Upper Derwent Val-

ley cannot be expressed through this simple game since the situation is more

like a mixed game, which is discussed in Section 3.4. Moreover, this game

in the parking congestion of the Upper Derwent Valley involves more than

two visitors, so that it is an N-person game, not a two-person game. Even

with agent-based modelling, a real world N-person game is difficult since it

is costly to achieve the behavioural data about agents against specific oppo-

nents. Moreover, the N-person game is likely to be infeasible from a com-

putational viewpoint since it eventually leads to the big-O or NP-hard prob-

lem3 as an agent size increases (Karp, 1972; Miller and Lung Shaw, 2002,

pp.200-201). Also, although the conventional game theory has the concept of

mistake-and-imperfect-information condition as ‘Trembling-hand perfection4’

(Selten, 1975; van Damme, 1983), this concept cannot be used in the N-

person game (Mas-Colell et al., 1995, p.259). Consequently, previous stud-

ies in the agent-based modelling of an N-person game are not conducted at

a practical level (Epstein and Axtell, 1996; Cohen et al., 1999; Gilbert and

Troitzsch, 1999b; Sunitiyoso and Matsumoto, 2005). This is also a serious

problem in the case of the Upper Derwent Valley since perfect information

cannot be assumed in the Valley (Thompson and Richardson, 1998; Klügl and

Bazzan, 2004, p.162), and the situation is an N-person game. Therefore, it

is sensible to give agents inductive reasoning to play the game in the Upper

Derwent Valley.

3A problem which is both NP (verifiable in nondeterministic polynomial time that re-
quires no more than a polynomial function of the problem size) and NP-hard (Weisstein,
2003). A problem is NP-hard if an algorithm for solving it can be translated into one
for solving any other NP-problem (nondeterministic polynomial time). NP-hard therefore
means ‘at least as hard as any NP-problem’, although it might, in fact, be harder.

4The notion of trembling hand perfection assumes that an agent, who wants to select
a choice, might select another by the slip of a hand. Therefore, agents could make minor
mistakes (tremble) and the mistakes lead to unexpected events. In a trembling hand perfect
equilibrium, an agent’s action is not only based on equilibrium beliefs but also based on
perturbed beliefs. Hence, the trembling hand perfection excludes strategies that are ‘unsafe’
given the risk of slight mistakes.
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3.3 Introducing the concepts of the Minority

Game

It is necessary to add the idea of the Minority Game into the conventional

game-theoretic model in order to analyse real world problems more realistically,

as in the case of the Upper Derwent Valley. From a different perspective, the

N-person game in the Upper Derwent Valley is ‘indirect’, but not an one-to-one

game. This means that the game is similar to that of the El Farol bar or the

Minority Game - i.e. opponents will be an unspecified group of visitors coming

to the Upper Derwent Valley.

In the situation of the Upper Derwent Valley, visitors should not come to

the Valley by car when they cannot park at their target parking areas. Also,

visitors arriving by bus will be glad that they chose the Bus option if they find

out there are no empty spaces in the parking areas, where the buses pass and

stop. These two situations indicate that the visitors are indirectly playing the

Minority Game.

For example, in the all-defect-situation, both visitors in Table 3.1 choose

Auto and this situation indirectly implies that Visitor 1 chooses Auto when the

car park is congested and vice versa. Similarly, in the all-cooperate-situation,

Visitor 1 chooses Bus when a number of other visitors go by bus and so the

parking areas are not congested.

The viewpoint of the game in the Upper Derwent Valley is changed from

a one-to-one competition to an implicit competition after introducing the Mi-

nority Game. However, this integration is not completed since there are many

ambiguous settings in the utility matrixes above. Hence, the utility matrixes

are stopped being used from here since these real utilities are not known and

visitors are competing only indirectly, but not on the one-to-one basis. The

concept of defect and cooperate strategies are not used in this situation since

55



visitors to the Valley are playing the Minority Game without the concept of co-

operation as explained in Section 2.3.2. By exchanging the concepts of game

theories and the Minority Game, visitors in the Upper Derwent Valley are

equipped with the strategies of the Minority Game.

The strategies of visitors use the information that the visitors experienced.

The visitors to the Valley experience toll, bus fare, and parking fees as well as

the searching time to find a parking space and walking time to the Information

Centre. It is difficult to measure congestion levels directly and it is more

robust to measure time, which is a congestion indicator (Fortin and Rousseau,

1998; Bugmann and Coventry, 2004). Searching time and walking time can

be used as indicators to measure congestion in the transport sector since time

is a standard unit to analyse transportation problems, e.g. ‘value of time5’

(Fowkes, 2000).

This ability of guessing and indicative reasoning are implemented as thought

patterns and consequently as strategies, which is explained further in the fol-

lowing chapter. The choice of memories, which store experience to calculate

the current and local best choice for a visitor, can be considered as a part

of strategies. Therefore, the strategies in the Minority Game in the Upper

Derwent Valley are the combination of the thought patterns and the choice of

memories. Before developing the Minority Game of the Upper Derwent Val-

ley, the Minority Game is compared with more sophisticated game theoretic

concepts in the next section.

5This is the ratio of weights on time and money (Mackie et al., 2003, §1.2)
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3.4 Comparing the Minority Game with more

sophisticated game theories

The situation at the Upper Derwent Valley can be explained by mixed strate-

gies6 of game theories since the situation has an equilibrium point where all

visitors should decide to go according to a random distribution, which is

weighted towards going a fixed proportion of the time at a theoretical level

(Edmonds, 1999b). However, the agent actions never converge to such equi-

librium in the Minority Game simulation due to the dynamics of the problem

and imperfect information, which is explained in Section 8.3.1. The same

phenomena are observed in everyday life, e.g. the stock market is always fluc-

tuating and does not converge toward an equilibrium. Therefore, the focus

of the Minority Game is generally more on fluctuation or variability rather

than on equilibrium, so that this problem should not be confused with the

problems that traditional game-theoretic mixed strategy focuses on (Challet

et al., 2004).

The Minority Game is more applicable to the situation of the Upper Der-

went Valley than is the game-theoretic mixed strategy. The traffic demand

in the Valley has seasonality so the situation is dynamic. Visitors are not ac-

quainted with one another, so perfect information cannot be assumed. Also,

this study is interested in the variation of user utility and mode choice amongst

the visitors. This is the reason the Minority Game rather than game-theoretic

mixed strategy, is implemented into this simulation model.

Moreover, the common knowledge7 of rationality (CKR) (Aumann, 1995)

6A strategy consisting of possible choices with a probability distribution (collection of
weights). This corresponds to how frequently each choice is selected (Rasmusen, 2001,
pp.66–81).

7Two people, 1 and 2, are said to have common knowledge of an event E if both know
it, 1 knows that 2 knows it, 2 knows that 1 knows it, 1 knows that 2 knows that 1 knows
it, and so on. THEOREM. If two people have the same priors, and their posteriors for an
event A are common knowledge, then these posteriors are equal (Aumann, 1976, p.1236).
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cannot be assumed in the Minority Game situation, since if every visitor has

CKR, the result would be the same as playing the game with uncertainty. To

win the Minority Game, a visitor has to know which option the majority of

other players choose. If the visitor obtains this information by using CKR,

the visitor wins the game. However, why can the other visitors not obtain the

same information by using their CKR? In this case, this logic fails. Having

said that, the different degrees of CKR among visitors will be an interesting

topic for future research.

In terms of data collection, the Minority Game is more straightforward than

game theories in practice since it is not necessary to collect the behaviours

on one-to-one interaction. Instead of the one-to-one behavioural data, the

frequency of bus and the searching time and walking time are asked in the

stated preference questions. Therefore, this approach uses the behavioural data

of agents against an unspecified group of visitors. The utility for each agent

is calculated on each simulation time step while a new set of the behavioural

data is generated. Additionally, each agent has a different set of data since the

agents’ utility function is based on belief and experience.

3.5 Re-combination of economic concept from

multinomial discrete choice model

The sections above show how the game theoretic situation in the Upper Der-

went Valley can be described in terms of the Minority Game to simplify the

problem. However, the decision making mechanism of visitors has not been

cleared and it is difficult to achieve this mechanism by using the conventional

Minority Game. The conventional Minority Game uses strategies to make

agents select their choices as described in the previous chapter. This simple
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approach works at a conceptual level, but not at a practical level. The strate-

gies of visitors could be numerous in the Upper Derwent Valley situation, and

there is no well-defined methodology to estimate the strategies of visitors even

if we find out small feasible choice sets for visitors (Manski, 1977). For example,

the IF-THEN rule of a strategy may be as follows: choose Auto if the searching

time was 10 minutes and toll fee was 1.5 pounds in the most recent trip. In this

case, how can we justify this IF-THEN rule? Fortunately, econometrics has

established an alternative approach to the IF-THEN rule, namely stated pref-

erence analysis surveys and multinomial discrete choice analysis. The stated

preference survey can be expressed in response to hypothetical scenarios of

non-existing alternatives (Fowkes, 2000; Ortúzar and Willumsen, 2001), so

that this is a suitable approach to analyse the road user charging and park &

ride schemes, which have not been implemented in the Upper Derwent Valley.

The stated preference analysis is explained further in Chapter 6.

The biggest transformation from the conventional Minority Game approach

to this approach is the conversion of a deterministic form to a probabilistic

form. So, this new Minority Game can be termed identified as stochastic

Minority Game in this thesis. For example, the probability of an agent going

to the Upper Derwent Valley by car (i.e. Auto) is:

P (Auto) =
exp(UAuto)

exp(UAuto) + exp(UBus) + exp(UCancel)
(3.1)

The utility function of UAuto in equation (3.1) is expected to be partially com-

posed of searching time for a parking space and walking time to the destination

area. These time factors are expected to have negative effects on travel utilities

in equilibrium models such as multinomial discrete choice models (Hess and

Polak, 2004), but these negative effects may not be correct in dynamic models.
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According to the Minority Game, the two thought patterns are deductively

considered to deal with the negative effects from the time factors. For example,

if the parking areas are severely congested at the time of travel, the searching

time and walking time tend to be long for the visitors by car. Therefore, these

visitors may think: 1) the parking area will be congested so I will not go to

the Valley by car next time, or 2) many visitors will be discouraged to come

to the Valley by car and then parking areas will be empty so I will go to

the Valley by car next time. Therefore, searching time and walking time can

affect the utility of Auto negatively as well as positively. One advantage of the

discrete choice model is that values of utilities and probabilities are relative

and have no meaning in absolute terms (Ben-Akiva and Lerman, 1985). This

means that the utilities generated by searching time and walking time can be

added to alternatives to express the thought patterns of the visitors. From the

description above, three thought patterns were considered for this simulation.

These three thought patterns of visitors were dependent on the mode that

takes the congestion related utility:

Thought pattern 1: believes that the parking area will be congested again

next time, so this discourages a visitor from going to the Valley by car;

Thought pattern 2: believes that the parking area will be less congested

next time, so this discourages a visitor from going to the Valley by bus;

Thought pattern 3: believes that the parking area will be less congested

next time, so this discourages a visitor from cancelling the trip.

The explanation of these thought patterns above is just a possible expla-

nation, but another explanation may be considered. In other words, since

these utility functions are not as explicit as those of the IF-THEN rules in the

conventional Minority Game, the transfer of the utility and utility functions
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themselves capture many rules of the Minority Game, i.e. benefit from the sim-

plicity. Another benefit from implementing discrete choice analysis is adapting

statistical and calibration techniques into the decision making of agents. The

IF-THEN rule approach can be more realistic than discrete choice analysis to

model human decision making since it is unlikely that we throw a die to make

a decision all the time. Nevertheless, it is infeasible to use the rule-based ap-

proach in the real world. Rule-based behaviours are not observable in reality.

Moreover, even if the rule-based behaviours are estimated, there is no estab-

lished validation method to justify this approach. In contrast, the validation

and calculation methods are robustly developed in discrete choice analysis.

This issue is further discussed in Chapter 5.

3.6 Conclusion

This chapter showed how the situation in the Upper Derwent Valley could be

explained as a game. The explanation of the game started from game theoretic

concepts and transferred into the Minority-Game concept. This transformation

enables one to analyse the game in the Upper Derwent Valley at a practical

level. Moreover, implementing discrete choice analysis into the new stochastic

Minority Game improves the practicality of the analysis due to its validation

method and the benefit from the probabilistic approach.

Although the thought patterns of agents in the Upper Derwent Valley were

approximated by deductive reasoning, the strategies of the agents have not

been understood yet. It is because the choices of memories, which are the other

key components of strategies8, were not justified in this chapter. Therefore,

the next chapter discusses the distribution of memories in reality and tests the

practicality of the stochastic Minority Game with an online game.

8The strategies for the Minority Game in the Upper Derwent Valley were defined as the
combination of thought patterns and the choices of memories on page 56.
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Chapter 4

Online Minority Game and an

conceptual stochastic

agent-based modelling

4.1 Introduction

This chapter has two stages: 1) collecting real data about the distribution of

memories through a web-based online game and 2) duplicating the data by

using an agent-based simulation model. The main motivation for this chapter

is to collect the distribution of strategies or more specifically the distribution of

memories in the real world Minority Game. In the original Minority Game or

El Farol Problem, allocating strategies is completely random (Arthur, 1994), as

discussed in the last two chapters. Previous studies have modified some parts

of the original game, but no study has verified the allocation of strategies in the

real world (Challet and Zhang, 1997; Edmonds, 1999b; Bazzan et al., 2000).

Therefore, it is essential to find out the real allocation of agent strategies before

this concept is implemented in real world problems. Verifying simulation by

comparing data and outcome is a common practice (Parunak et al., 1998;
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Lofton, 2000) and it is an especially important process in agent-based modelling

(Moss, 2002, p.7273).

4.2 Online game as data collection methodol-

ogy

The data collection was conducted through my web site (http://users.ox.

ac.uk/cgi-bin/safeperl/scat1898/mg.cgi) (Figure 4.1). The web site was

written in a restricted subset of the Perl language called Safe Perl (Oxford

University Computing Services, 2005). Since many useful functions were re-

stricted in the subset language, the web site had to be simple. However, the

web site dynamically changes according to the responses of game players, so

that the web site is like an online role-playing game. It was not the aim of

this thesis, but the web site is now used as an example in the interactive web

design course at the Oxford University Computing Services.

On the web page mentioned above, the game is described as below:

To win a game you have to choose a less congested side, i.e. either

Side A or B, up to 10 times. You have to pay one point to play each

game against other 99 artificial computer players. These artificial

players are assumed to optimise the result of the last five games

to estimate the less congested side. You can also see the result

of the last five games to help your decision making. Then, the

summed points on one side are shared by the players on the other

side. Therefore, if you choose the less congested side you will gain

otherwise you lose some points. Also, the score you gain or lose is

determined by the level of congestion: if more players are on the

other side and fewer players are on your side, you will get a bigger
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Figure 4.1: Online Minority Game

64



proportion of a bigger pie.

Besides the explanation on the web site, the dynamic feedbacks were given

by me through email and my other web site (http://www.geog.ox.ac.uk/

∼ttakama/blog/).

As stated above, the main purpose of this online Minority Game is to find

the distribution of strategies in the Minority Game, so that this is a web-

based online questionnaire about human behaviour rather than a real online

game. Therefore, the number of artificial agents in each side was generated by

a pre-determined distribution before this online game was launched. First, the

number of Cancel was generated from lognormal distribution with the mean

and a standard deviation of 1.5 and 0.8 on the log scale, respectively. Then,

the numbers of Side A and Side B were generated from a truncated normal

distribution with the mean of (100 – Cancel) / 2 and a standard deviation of

20. If neither total size is 100 nor individual size is positive, the calculation

was rejected.

The web site was launched on the 14th of January 2005. The web game may

still be playable on the web site, but this analysis is based on the data collected

between the 14th of January and 25th of February 2005. To publicise this

game, the email lists of four research and academic organisations were used.

They were the School of Geography and the Environment at the University of

Oxford on the 14th January 2005, St Catherine’s College of the University of

Oxford on the 21st January 2005, the University Transport Studies Group on

the 28th January 2005, and the Society of Computational Economics on the

4th February 2005. There is possibly sampling bias, which corresponds to these

email lists. However, according to the personal response and domain name,

people played this games from all over the world and these players possibly

came via search engines with relevant keywords and my personal weblog (diary)

web site.
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Players were asked to select which previous result was the most useful (and

the second most useful if applicable) information to make their decisions for

a game they were facing at that time. Initially, the choice of past results

(memories) is from the most recent game to the fifth recent game. Then, an

overall pattern, which was defined as “a trend, average, or oscillation of player

numbers etc., but not a specific memory”, was added as an extra choice from

the 4th February 20051.

During the specified period, 3,886 games were recorded. One set of games

could be played as many as ten times, if the set was not terminated according

to the rule. A total of 499 sets of games were recorded and 304 different

individuals played the games according to the names of affiliations and players.

This means that 40% of the games are played by returned participants. In

addition, 314 out of 499 sets are complete sets of games (i.e. a set contains 10

games).

4.3 Justification of web-based questionnaire

A major concern about web-based online questionnaires is the quality of data.

Some researchers may think that people (in this case, players of this game)

do not think, but just select the choice randomly. The response time can

be a good measurement as thinking time between questions (or games in this

case). The response time is equivalent to lognormal distribution with the mean

of 2.55 seconds and a standard deviation of 0.685 seconds on the log scale,

respectively (Figure 4.2). The lognormal distribution is typical for such data

(VanBreukelen, 1995; Ciuhandu and Murphy, 2002). More importantly, the

response time shortens as players play more games probably because players

get used to this game with time (Figure 4.3). Therefore, there are some signs

1http://www.geog.ox.ac.uk/∼ttakama/blog/index.php?entry=
entry050204-112028
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Figure 4.3: Boxplots of re-
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plays. The response times are
seconds that players spent from
the previous games to the games
indicated on the x-axis.

suggesting that players are using their brains rather than randomly selecting

their choices to play this game. In addition, web questionnaires are becoming

acceptable as a research tool today (Rourke and Anderson, 2002), and people

are more amenable to web questionnaires as they have experienced many web

technologies already (Anderson and Kanuka, 2002).

4.4 Distribution of strategies

In this section, the distribution of strategies is examined. Only the past results

were given to players and they were asked to use the information to win the

games. Therefore, there were two components in the players’ strategies, 1)

choosing a referring memory and 2) choosing a thought pattern, which is either

following the information of the referring memory or not. That is, ‘Following

the information’ means that a player chooses the minority side of the selected

memory. ‘Not following the information’ means that a player does not choose

the minority side of the selected memory. The idea is the same as the thought
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patterns introduced in the last chapter on page 60. For example, a player

chooses the memory of the most recent game as a reference and the minority

side of the most recent game is ‘Side A’, so then the player decides to choose

‘Side A’. In this case, the thought pattern is following a reference, i.e. choosing

the minority side of the chosen memory2. The other thought pattern is the

same process except that your decision is ‘Side B’.

First, the equal distribution of memories among the different round of 10

games between 1 and 10 is tested with Chi Square (χ2) statistics. The p-value

of 0.521 does not reject the null hypothesis: distributed memories are the same

for every round of 10 games. Therefore, players do not change the way of using

memories with time.

Second, the equal distribution of memories with and without the overall

pattern as an extra memory option is tested. The p-value below 0.01 from Chi

Square statistics rejects the null hypothesis: the distribution of memories is the

same for the existence of the extra choice. This means that at least one of the

memory distributions is different. Figure 4.4 shows the relative frequencies

of memories with and without the overall pattern3. This figure shows that

the most recent memory is selected relatively more with the choice of the

overall pattern. The trends are opposite to the rest of the memories used.

That is, the change in the memory distribution is not proportionally equal.

The difference may cause a significant problem to allocate the distribution

of memories and consequently to allocate that of strategies. However, it is

difficult to identify the real strategies of ‘the overall pattern’. The pattern can

be considered as moving average, minority times between two sides, weighted

2Unless someone has an emotional attachment to the letter ‘A’ or ‘B’.
3The relative frequencies with the overall pattern were estimated as follows. The choices

of the overall pattern, which were added from 4th February 2005 (See page 65), were excluded
first. Then, the number of each memory chosen was divided by the sum of the un-excluded
memories. Therefore, the relative frequencies with the overall pattern were comparable to
the relative frequencies without the overall pattern.
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out the overall patterns

average, oscillating numbers, etc.. Therefore, sub-categorising the choice of the

overall pattern may change the distribution of memories again. Eventually,

this is the trade off between the quality and quantity of survey results. As

mentioned on page 5, this whole project is regarded as experimental research

for future research. Therefore, this problem should be seriously considered,

but this thesis leaves this issue to future research.

Third, the equal distribution of memories and the thought patterns4 are

tested. The p-value of 0.2831 from Chi Square statistics does not reject the

null hypothesis: the distribution of memories is the same if choosing the mi-

nority side of a selected memory or not. Therefore, players do not change the

choice of memories regardless of the thought patterns. Also, the figure shows

that the distribution of the thought patterns is 50/50. Figure 4.5 shows that

the difference between the two thought patterns is nominal and statistically

insignificant.

In conclusion, the distributions of memories selected were not equally dis-

tributed. Most players selected the most recent game result as a reference to

play the current game (Table 4.1). Also, older memories are less frequently

4the choice of the minority side
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Figure 4.5: Relative frequencies of memories used between choosing or not
choosing the minority side of a selected memory

selected by the players and this is consistent with the general time discounting5

in economic theory (Samuelson, 1937; Frederick et al., 2002) and the Bayesian

approach of statistical modelling6 (Pole et al., 1999). Moreover, the distribu-

tion did not change regardless of the thought patterns throughout the time.

Therefore, the one-dimensional distribution of memories, which is presented in

Table 4.1, is discussed in the rest of the sections.

recent 2nd recent 3rd recent 4th recent 5th recent
Freq 0.77 0.09 0.06 0.04 0.04

Table 4.1: Distribution of memories

5The older the information, the less the information is relevant.
6The Bayesian approach is dynamic modelling with predictor parameters (τt). The

parameters are distinct but stochastically related through a system equation such as
τt = Gtτt−1 + ωt, where Gt is a matrix of known coefficients and ωt is an unobservable
stochastic term.
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4.5 Theoretical discussion for the indifference

between two thought patterns

The distributions between the two thought patterns, ‘choose’ or ‘not choose’

the minority side, in Figure 4.5 are indifferent and this section discusses the

reason of the indifference further from game theoretic viewpoints. This indif-

ference between two thought patterns can be explained by a famous example

in game theory such as ‘Meeting in New York game’ (Schelling, 1960, pp.54–

56)(Roy, 2002, 64–65). Mr. Schelling and Mr. Thomas know that they must

Table 4.2: Payoff matrix of meeting in New York game

Mr. Schelling
Empire Grand
State Central

Mr. Thomas
Empire State

HHHHHH10
10 HHHHHH–1

–1

Grand Central
HHHHHH–1

–1 HHHHHH10
10

meet each other in New York City on a specific day at noon, but do not know if

they can meet at the top of the Empire State Building or at the clock in Grand

Central Station (Table 4.2). Then, each of them has to choose which location

they decide to meet the other at but they have to show up at the location at

the same time (noon). If their selected locations are the same, they can meet,

so they are happy, i.e. both win the game. If the locations are different, they

cannot meet so they are disappointed, i.e. both lose the game. In this game,

there is no pure strategic equilibrium or strict dominant strategy. However,

each player chooses Empire State or Grand Central at the equal probability

with a mixed strategy. When one of the players randomises his decision, it

makes the opponent indifferent between playing with Empire State and Grand

Central, or vice versa.
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This concept is perfectly applicable to the situation of this online Minor-

ity Game. For example, Mr. Thomas is any player of the web game and

Mr. Schelling is the result shown of the current game. The utility for ‘Cur-

rent result’ does not make sense; therefore, it is omitted from Table 4.3. If a

Table 4.3: Payoff matrix of the online Minority Game. ‘Choose’ means
choosing the minority side of a selected memory. Similarly, ‘Not choose’
means not choosing the minority side of a selected memory. Since the results
of the games are pre-determined, the strategies of ‘Current result’ can be
viewed as that in which the current game uses the thought pattern, as
either choosing or not choosing the minority side of a selected memory, to
determine the minority side of its result.

Current result
Not choose Choose

Minority side Minority side

A player
Not choose 10 –1

Choose –1 10

player uses the thought pattern, which chooses the minority side of a selected

memory, and the minority side of the current game is also the minority side

of the selected memory7, the player gains some points and wins the game, i.e.

the top left corner of Table 4.3. The situation is the same for ‘not choosing

the minority side’. If a player uses the thought pattern, which does not choose

the minority side of a selected memory, and the minority side of the current

game is not the minority side of the selected memory, the player also gains

some points and wins the game, i.e. the bottom right corner of Table 4.3.

On the other hand, if the selected thought pattern of a player is different

from the thought pattern of current results, the player fails to choose the

minority side of the current result; therefore, the player loses some point, i.e.

the top right and bottom left corners of Table 4.3. In fact, all past results,

which players see, were pre-determined in a randomised manner, as explained

7This can be viewed as that in which the current game uses the thought pattern, which
chooses the minority side of a selected memory, to determine the minority side of its result.
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on page 65, but the randomised mechanism was not shown to the players. So,

the current result seems to randomise its decision and it makes the player of

this game indifferent to choosing or not choosing the minority side of a selected

memory.

Moreover, this is even true in the real Minority Game, introduced in Chap-

ter 2. The movement of the Minority Game is indistinguishable from the ran-

dom walk (Hughes, 1995) and the strategies of agents are also indistinguishable

(Edmonds, 1999b) at a macro level, although different players have different

experiences and strategies. In other words, the decisions of agents seem to be

random moves, but it is a chain of thoughtful decisions at a micro level. The

decision of an agent seems random to other agents and so the decision of these

agents also seems random to some other agents since the decision of the second

group of agents is based on the ‘random’ decision of the first agent. Moreover,

the decision of the first agent seems to be a randomised decision, but in fact,

it is not a randomised decision in the Minority Game (Mas-Colell et al., 1995,

p.252).

For example, in the 1994 Football World Cup final Italy against Brazil, the

Brazilian goal keeper, Cláudio André Taffarel, had to consider diving either

the left or right when the penalty taker of Italian team, Roberto Baggio, aimed

at the net8. Taffarel must have tried to read Baggio’s mind and thought well,

but the Baggio’s decision to kick to the left or right might have seemed to be a

randomised decision to Taffarel. Then, Taffarel dived to the left while Baggio

kicked the ball into the sky. Unfortunately, the game was not made this time.

In any case, the whole process does not seem to be different from the series of

random decision making from the outside (at least for amateur observers like

me). However, the randomness of Baggio’s decision was just a false front and,

8There is actually another choice such as ‘not dive’. However, this does not seem to be
a choice for Taffarel according to Baggio (2002) (Read the next footnote).
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in fact, he had some ideas about the kick9 (Baggio, 2002) so that Taffarel’s left

dive was not a randomised choice, either.

This is the reason why the Minority Game seems like a random movement

from a macro level, although players or agents play the game while they are

using some algorithms to try to win the game. The next section shows that

the process of agent decision making and random ‘like’ movements is simulta-

neously at a system level in a simulation.

4.6 Comparison between simulation results

In this section, the result of the web Minority Game is duplicated to verify

the mechanism of the Minority Game. As a verification process, the situation

of this simulation was set exactly the same. Only one agent plays this game

at a time against the predetermined results like the online Minority Game. A

simulation runs 10 games, and 499 sets of games are played, i.e. a total of 4990

games.

First, the strategies of real players have to be confirmed before modelling

agent behaviour. Out of 3,886 games, Side A and Side B are selected 1,859

and 1,883 times, respectively. This means that only 144 games or 3.7% of

total games are cancelled. In this web game, you can gain up to 99 points,

but you may lose only up to 0.99. One maximum win is equivalent to 100

maximum losses, so that the skewed distribution to the big maximum win

may motivate players not to cancel a game. Additionally, players are most

unlikely to lose anything in their actual life by losing a game in the web game.

Therefore, there can be non-commitment bias in this online game (Hovland and

Sherif, 1952; Polydoropoulou et al., 1997). This web game seems to be a binary

9From his experience, Baggio knew (believed) that Taffarel always dived. So, Baggio
kicked the ball into the middle, but he missed the kick. Taffarel possibly had a similar
decision making process from his experience.

74



choice of Side A and Side B rather than a multinomial choice. Therefore, the

simulation does not consider Cancel as a choice of the agent, but treats it as a

choice randomly assigned with the probability of 0.037. This means that the

set of thought patterns remains the same, i.e. choosing or not choosing the

minority side of the selected memory. Then, there are five choices of memories

so that there are 10 sets of strategies.

The results in the web game show that each individual has multiple strate-

gies to play with, so that the agent in this simulation also has multiple strate-

gies. It is difficult to determine how many strategies a real human has, so the

threshold of five is used and this is based on the traditional human categorical

mechanism – ‘people are unlikely to remember more than several categories’

(Miller, 1956). Therefore, up to five strategies out of 10 are assigned to the

agent at the beginning of a simulation according to the calibrated distribution

of memories (Table 4.4). The calibration was necessary since the distribution

of the most recent memory was under- distributed and the rest of the mem-

ories are over-distributed with the original distribution. The distribution of

the strategies is the same as the original distribution of memories when the

calibrated distribution of memories is used to assign strategies to the agent.

This means that the agent may decide its choice based on the most recent

game result, but may use the oldest result in another occasion.

recent 2nd recent 3rd recent 4th recent 5th recent
Freq 0.83 0.065 0.045 0.03 0.03

Table 4.4: Distribution of memories after a calibration process

We start looking at the mechanism of the strategy more closely in the

following sections.
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4.6.1 Strategies

The agent-based simulation model of the web game starts from creating strate-

gies since strategies rather than the agent make a choice as explained in Chap-

ter 2, i.e. the agent chooses the best strategy and follows the choice the strategy

made.

The relationship of the two thought patterns can be expressed more for-

mally in mathematical formulae. In this Minority Game, each agent has three

choices, namely Side A, Side B, and Cancel. Side A and Side B have exactly

the same mechanism to calculate their utilities. The study uses decision theory

(i.e. probability theory and utility theory) as a decision making mechanism.

The utility functions of both choices are based on the rule of gaining points,

which is mentioned on page 63 in this chapter and on the web page, i.e. after

you pay 1 point, the summed points on one site are shared by the players on

the other site. The utility functions for the two choices are:

UA
t = Fee(NB

t−1/N
A
t−1)− Fee (4.1)

UB
t = Fee(NA

t−1/N
B
t−1)− Fee (4.2)

Nx is the number of players on Side x and t is the current game. Equations

(4.1) and (4.2) mean that the entry fees (point) paid by an agent on one side

are equally shared by the agents on the other side, ‘benefit’. Then, these

agents pay the fee on every game, ‘cost’, so the overall utilities are the benefit

minus the cost. Having said that, there is only one agent in this simulation

and the rest of the agents are just predetermined numbers. The predetermined

results are set to make sure that neither side gets zero; therefore, the problem

of ‘division by zero’ will not occur. Hence, these equations express the rule of

game.

The decision is made based on the relative proportion of logarithm trans-
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formation of these utilities in a strategy, which is the most popular formula

in discrete choice analysis (Ben-Akiva and Lerman, 1985; Greene, 2003). The

two thought patterns affect the probability of each choice. For example, the

probability of an agent choosing Side A with the thought pattern of choosing

the minority side is:

P (Side A) =
exp(UA

t )

exp(UA
t ) + exp(UB

t )
(4.3)

Since the probability to choose ‘Side B’ is a mirror image of this equation, this

thought pattern is likely to choose the minority side of the chosen memory.

However, it is important to explain that this thought pattern is likely to choose

the choice with the highest utility from the viewpoint of thought pattern of

choosing the minority side. Similarly, the thought pattern of not choosing the

minority side selects a choice by swapping the higher utility and the lower

utility since the minority side has the higher utility in the utility function. In

other words, when the choice with the higher utility is selected, an agent with

the thought pattern of not choosing the minority side, in reality, chooses the

choice of the lower utility. Therefore, the explanation of thought patterns can

be re-written as below from the viewpoint of Equation (4.3): thought pattern

1 is likely to select the choice with the higher utility and thought pattern 2 is

likely to select the choice with the lower utility. The thought pattern 2 is the

second thought from the result of the binary discrete choice. Put differently,

the thought pattern 2 is skeptical about the result of the binary discrete choice

like Hume’s evaluative skepticism10 (Clark, 1998).

Introducing the idea of strategies into the decision making process has less

10“Hume does not believe that it is possible to define evaluative terms. They are indefin-
able, primitive terms. Hume emphasizes that ‘certain qualities in objects’ are the occasions
for our sentiments of approbation and disapprobation” (Gracyk, 2003, §3.2). This skeptism
can be viewed as a sequence of testings in every day language, i.e testing a value, re-testing
the result, and so on.
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assumptions than the decision making process only with discrete choice analy-

sis. For example, with discrete choice analysis, a modeller has to decide which

thought pattern the agent has without the idea of strategies. The conventional

discrete choice models have only one set of probabilistic equations, which is

similar to Equation (4.3). In contrast, the agent in this simulation model has

as many sets of probabilistic equations as the number of thought patterns.

Then, the simulation model lets the agent choose the best set of equations as

a thought pattern and consequently the best strategy.

4.6.2 Choosing the best strategy

Each strategy calculates its own successfulness and the best strategy with the

maximum success score is chosen before each game. Also, this Minority Game

uses the horizon of strategy successfulness. The horizon is related with the

adaptability of agents, since a long horizon makes the agent consider too much

historical information, which may not be relevant to the current situation (Liu

et al., 2004, pp.347-351). The length of the horizon is a parameter H, which

represents the horizon for which each strategy records its score. Therefore, the

success score of each strategy is only the virtual points in the last H steps an

agent experienced:

θs
t =

t−1∑
i=t−1−H

R
xs

i
i /H (4.4)

where:

x = Selected choice by strategy s at i

Rx = Return from the selected choice at i

Rx is calculated from equations (4.1) and (4.2), so that its unit is the point

in the web game. As shown in Equation (4.4), the success score θ of any given
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strategy s at a time step t is the moving average of the return from a selected

choice by the strategy within the scope of horizon H. The choice made by a

strategy is not relevant with the choice used by an agent, which possesses the

strategy. All strategy-scores θ were calculated whether or not the strategies

were chosen by the agent. Similarly, although H was set to five in this model,

the length of horizon was irrelevant with the length of experience remembered.

4.6.3 Example of the decision making process

This is an example of the decision making process. At a given week, each

strategy calculates the probability of each choice according to the logit model

including equation (4.3). However, the thought pattern 2 swaps the utilities or

probabilities according to its rule. Then, there are five memories, so that a set

of 10 possible strategies in an agent can be like the one in Table 4.5. These 10

strategies are possible strategies, but there are only a maximum five strategies

for each agent in reality, according to the calibrated memory distribution in

Table 4.4, i.e. some agents may have only one strategy. For example, a subset

of five strategies can be like the one in Table 4.6.

Next, this agent needs to find the best strategy to make a mode choice.

The set of strategies in Table 4.7 is the same set of strategies as in Table

4.6, and they have five horizon values. The choice in the table is the choice

each strategy made in each experienced time step. R is the return from the

predicted choice. Then, θ is the moving average of the five returns. In this

example, the thought pattern 1 with memory 1 has the highest success score in

Table 4.7, so this is the current best strategy. Nevertheless, this best strategy

may change since it is a moving average. In the thought pattern 1 with memory

1, the side A has the probability of 0.6 (Table 4.6), so this choice is likely to be

passed to this agent, but this is still determined according to the probability.
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Moreover, from the viewpoint of an agent, the mechanisms of strategies and

multinomial discrete choice models do not matter. For an agent, this is merely

a trial-and-error decision making process.

4.6.4 Point gain and loss

The point changes according to the utility functions, but the attendance num-

bers are from the current game, but not a past game. The point does not

change for Cancel since the agent with this choice does not play the Minority

Game. The equations of point gain/loss for the three choices are:

4PointA
t = Fee(NB

t /NA
t )− Fee (4.5)

4PointB
t = Fee(NA

t /NB
t )− Fee (4.6)

4PointC
t = 0 (4.7)

4.6.5 Results

The distribution of the strategies used by the computer agent is the same as

that of the original distribution shown in Table 4.1. The movements of the

points are indistinguishable between the real web game played by human beings

(Figure 4.6) and the simulation played by an artificial agent (Figure 4.7). Both

results are heavily skewed, so that the two results are numerically compared

with the five points statistics (Table 4.8). The five points statistics do not

include the sets of games terminated before the 10th game. All five points

statistics and central values are reasonably similar to each other. Additionally,

the number of Side A and Side B were reasonably similar (i.e. 2250 and 2391)

in the simulation just as that of online games. However, this does not mean a

choice was a randomised decision making process as explained in Section 4.5.

As the utility functions (4.1), (4.2), and a probability choice function (4.3)
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gets during 10 games (with
499 times iteration), i.e. sim-
ulation

Table 4.8: Five points statistics (plus mean) of the distribution of points
at the end of 10 games

Min. 1st Qu. Median Mean 3rd Qu. Max.
Online game 1.038 4.041 7.240 10.630 11.810 108.100
Simulation 1.051 4.500 6.735 9.620 10.920 107.100

show, the agent has an algorithm to make a choice so that it just looks at a

randomised decision making process from a macro level.

4.7 Conclusion

The web online game was conducted to collect the data for the distribution of

strategies, or more specifically the distribution of memories. Most players used

the most recent information of the game and older memories were less likely

to be used. In contrast, the distribution of thought patterns did not have any

obvious tendency and this was consistent with the game theory.

The result of the web game was duplicated by agent-based modelling. The

distribution of strategies was the same as the distribution of strategies in the

real world after a small calibration. The movements of points that real players
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gained are indistinguishable from those that an artificial agent gained. These

results may not be surprising since the rational behaviour of human players

seems pseud-rational as mentioned earlier. However, this does not mean that

thought patterns are a randomised decision making process as the utility func-

tions (4.1), (4.2), and a probability choice function (4.3) show. Moreover,

these results at least proved that simulating human behaviour through an

agent-based model does not produce outcomes which are far from reality and

conflict with theoretical arguments. It is concerned that the memory distrib-

ution determined in this chapter is used in subsequent chapters on the Upper

Derwent Valley case study. Personally, this concern is considered the weakest

point in this thesis; however, a feasible alternative approach is not available

at this moment. The distribution of memories used by the visitors to the Up-

per Derwent Valley can be obtained by the combined approach of this chapter

and stated preference analysis in future research. Moreover, although this is

not the main focus of this thesis, this chapter shows the potential of online

questionnaires to collect the large sets of data quickly without huge efforts and

budgets.

4.8 Conclusion for the theoretical part of this

thesis

This is the end of the theoretical part in this thesis. Chapter 2 explained

the advantages and disadvantages of the Minority Game to analyse real world

problems such as congestion in the Upper Derwent Valley. Chapter 3 discussed

how the problem could be explained into the economic game theory and the

Minority Game. The two approaches mutually help to analyse the situation in

the Upper Derwent Valley leading to the development of a stochastic Minority
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Game. In addition, that chapter defined the strategies of the stochastic Minor-

ity Game in the Valley as the combination of thought patterns and memories.

The thought patterns were deductively discussed in that chapter. The dis-

tribution of memories was figured out while the mechanism of the stochastic

Minority Game was briefly tested in this chapter.

From the next chapter, the components of the stochastic Minority Game

including utilities, searching time as a congestion indicator, etc., are examined

with the data collected around the Upper Derwent Valley. Although the the-

oretical part ends here, theoretical discussions come repeatedly in subsequent

chapters due to the generative approach of this thesis. Some theoretical argu-

ments are left in the successive chapters because the arguments are meaningless

without practical examples and justification in the generative approach. The

theoretical arguments will be clarified more by the end of the practical part of

this thesis.
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Part III

Practical part
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Chapter 5

Background for practical study

5.1 Introduction

The practical side of this thesis has not been referred to much in the previous

three chapters. Therefore, the practical background information specific to

the practical study is now presented. These are generic concepts presented

throughout this part of this thesis and more specific information is shown in

each subsequent chapter.

First, the types and the methodology of data used in this practical study

are explained. Next, the generic issues about practical modelling work are

discussed. Following this, more specific topics namely agent-based modelling

and the stochastic approach, are discussed. Finally, this chapter concludes the

structure of this practical part and a stochastic agent-based modelling. Over-

all, this chapter explains reasons to use the stochastic agent-base modelling

approach.
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5.2 Data collection

The data in this project is described in detail in each chapter, so only the

location, method, and the quality of data are explained here. The behavioural

survey on mode and parking location choices was a destination survey, i.e. the

survey was conducted at the parking areas around the Upper Derwent Valley

(Figure 5.1).
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Figure 5.1: Map of Derwent Valley

After the pilot survey, 700 questionnaires were distributed and 323 were

returned (46.1 %) during the summer of 2003. The same survey was attempted

in the origins of visitors such as from Sheffield and Manchester in the summer

of 2004 as an M.Sc. dissertation I supervised (Thomopoulos, 2004). However,

only 10.65% or 69 questionnaires were returned out of 648 questionnaires. This

low return rate showed that the origin survey was not practical in this case

study. For example, proper surveying to collect 300 samples out of the entire

Manchester population, i.e. 2,482,352 people (National Statistics, 2001), seems
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infeasible. The reasons are that it is more difficult to intercept potential visitors

to the Upper Derwent Valley and dangerous to generalise the attributes of the

potential willingness to travel for such a small proportion of the population.

The low return rate of the origin survey can be explained as follows. Most

of the people who received the questionnaire did not know the issues raised

in the Upper Derwent Valley or they were not interested in the issues. Thus,

this D.Phil. project excluded the origin survey data because of the inconsistent

quality compared to the destination survey. The results from the origin survey

are only briefly discussed in the concluding chapter as one of potential future

research.

The traffic related data used in this project were car movements, the arrival

rate of private cars, parking hours, and annual traffic flow on the A57. The

arrival rate was collected in front of a parking area during the survey period

mentioned earlier. The parking hours at each parking area were from the

parking beat surveys, which were undertaken over three days during August

2001, i.e. the 23rd, 26th, and 27th of August 2001 by the Transport Office of

Derbyshire County Council. The 23rd of August 2001 was a normal summer

weekday, in contrast, the 26th and 27th of August 2001 was a Sunday and

the summer Bank Holiday, which were usually the busiest days in the Upper

Derwent Valley. All parked cars were recorded, so the data set acted as a

population. In total, 1961 cars were recorded. When the data was given

by the local authority, the fraction (minutes) of the time was rounded off.

Therefore, the time showed only parking hours. In addition, the annual traffic

flow on the A57 was collected by an automated system during 2003. The flow

was westbound and eastbound from 7:00 to 19:00, and the average flow was

used for this project.
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5.3 Generic information of modelling

In this section, basic concepts and assumptions are explained. These assump-

tions are made not only for conventional approaches, which conduct analysis

solely with discrete choice models, but also for the approaches with agent-based

models. One of the advantages in the agent-based model is that fewer assump-

tions are made. However, unfortunately, this modelling is still constrained

by time, budget, and other common costs associated with social surveys and

consequently it is necessary to make a number of assumptions.

5.3.1 Validation and verification processes

Verification and validation of modelling are important issues throughout any

modelling work. Generally, the verification checks whether a programme does

what it is planned to do and the validation pertains to whether the simulation is

a good model of the target (Gilbert and Troitzsch, 1999a). However, validation

and verification processes are different in different types of models (Balci, 1994;

Giunchiglia et al., 1998). Multinomial discrete choice models have clearer

validation guidelines, such as Independent and Identical Distribution (IID)1,

Independence of Irrelevant Alternatives (IIA)2 and Log-likelihood ratio test

(McFadden, 1974)3. The variation of multinomial discrete choice models was

not the problem in this thesis for economic analysis because the analysis was

1Each distribution has the same probability distribution as the others and all are mutually
independent.

2“Where any two alternatives have a non-zero probability of being chosen, the ratio of
one probability over the other is unaffected by the presence or absence of any additional
alternative in the choice set” (Luce and Suppes, 1965)

3The log-likelihood ratio test is used to find out (Ortúzar and Willumsen, 2001, p.263):
1) Attribute generality – There are two main types of explanatory variables, generic and
specific; the former have the same weight or meaning in all alternatives, whereas the latter
have a different specific meaning in each of the choice options and therefore can take a zero
value for certain elements of the choice set, and 2) Sample homogeneity – It is possible to
test whether or not the same model coefficients are appropriate for two subpopulations (say
living north and south of a river).
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executed with an off-the-shelf software package, BIOGEME4 (Bierlaire, 2003).

Having said that, two algorithms, BIO and DONLP2, were used to check if the

results from the two algorithms were consistent.

In contrast, although some guidelines for agent-based simulation models

have been suggested in some studies (Moss et al., 1997; Gilbert and Troitzsch,

1999a; Raney et al., 2003; Peeta et al., 2005), there is no clear checklist of

the validation for agent-based simulation models. However, the inconsistent

guideline is understandable since agent-based modelling aims “to simulate re-

ality more realistically” so that the modelling process itself is the validation

process. Hence, validation processes could be as many as agent-based mod-

els. Thus, this project followed the guidelines of previous studies where it was

appropriate and other validation were deductively explained in the theoretical

part. Verification was more important since an agent-based simulation model,

as software, was programmed in this project (Appendix B). An agent-based

simulation model might be considered as an implementation of object-oriented

programming and the programming paradigm has its own established verifi-

cation method such as the Unit Test. This testing method was established by

Beck (1994) and has been used as a standardised testing method in a lot of

object-oriented programming. The approach is to write testing programmes

for every non-trivial method to isolate each method from the problems of other

methods. This project used the Java version of Unit Test, JUnit, and over 300

methods were tested at least every 10 minutes while the model was developed

(Andou, 2003). It is common knowledge that “there is at least one bug in

every non-trivial program”, so the Unit Test does not guarantee to solve all

verification problems. However, significant bugs were possibly eliminated in

this project.

4http://roso.epfl.ch/biogeme
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5.3.2 Policy as an exogenous factor

Traffic regulations and policies involve the property of authority, and the mod-

els in this project do not possess this authority. Therefore, the regulations are

designed as exogenous or offline factors (Wooldridge, 2002, p.213). Thereby,

the models do not take into account the possibility of policy emergence in cur-

rent agent-based simulation models (Schlesinger, 2001). Observing the emer-

gence of policy is not a part of the question in this research since the traffic

regulations in this model are made by the policy makers in the real world.

In addition, the new regulations to control user demands were integrated

with the model as scenario-based analysis. The policies such as the toll fee

and bus fare were decided based on the interviews with local authorities. This

issue is further discussed in Chapter 9 as potential future research.

5.3.3 Unit of agent

The lowest level of society in this agent-based simulation model is a visitor

group, such as a family or hiking group, and the decision is made by a trip

leader. Modelling collective decision making based on each individual would be

a more realistic approach. However, collecting such data needs several rounds

of surveys among each visitor group. This process is time consuming and

difficult even within one corporation (Rose and Hensher, 2004). Therefore, the

process is likely to fail with 300 households scattered around the Manchester

and Sheffield regions. Moreover, from the view of agent-based modelling, it

is common to model not from the individual, but from higher social levels

such as departments, firms (Edmonds, 1999b), and visitor groups (Raney et

al., 2003; Balmer et al., 2004). Thus, this study uses a visitor group by a unit

of decision making as it has been applied in previous studies on the discrete

choice model of road user charging scheme (Steiner and Bristow, 2000).
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This section showed the importance of validation and verification in modelling

work. In this project, these are handled with standardised testing methods in

multinomial discrete choice models and object-oriented programming. Partic-

ularly, the validation methods of the choice models are useful since the decision

making process is complex in the real world. Moreover, policies are treated as

exogenous factors and the lowest level of society is set as a visitor group due to

the complexity in the real world. These features are continuously discussed in

the next section since the testing facility and simplification for speed are the

key factors in stochastic agent-based modelling.

5.4 Concepts of the stochastic agent-based model

5.4.1 Differences between microsimulation and multi agent-

based simulation

Microsimulation and multi agent-based simulation are sometimes confused

with each other since the two simulation models describe macro phenomena

bottom up. These two simulation models are used interchangeably in many ar-

ticles. However, these simulation models are formally dissimilar. According to

Gilbert and Troitzsch (1999a), the historical origins are different. Microsimu-

lation was started as a direct descendent of the stochastic process in the 1950s.

In contrast, the multi agent simulation was started in the late 1980s as a child

of cellular automata5 and artificial intelligence6. As their parents are different,

the characteristics of the two simulation models are also different.

5Cellular automata models a world in which space is represented as a uniform grid,
time advances by steps, and the ‘laws’ of the world are represented by a uniform set of rules
which compute each cell’s state from its own previous state and those of its close neighbours.
(Gilbert and Troitzsch, 1999a, p.122)

6It is the science and engineering of making intelligent machines, especially intelligent
computer programs. It is related to the similar task of using computers to understand
human intelligence, but AI does not have to confine itself to methods that are biologically
observable (McCarthy, 2004, A.1).
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Raney et al. (2003) explain the difference clearly. Microsimulation is based

on the stochastic process of molecular dynamics, which means that if two mole-

cules are in the same situation the expected movement is the same. In contrast,

the multi agent simulation model treats the agent more intelligently and het-

erogeneously; therefore, the expected movement of two agents may not be the

same even in the same situation. Intelligence can be translated into a rule-

based code of artificial intelligence, in contrast to the continuous equation of

stochastic process in the microsimulation. More importantly, microsimulation

generally does not consider heterogeneity between molecules, or characteris-

tics in agents. Therefore, although microsimulation is based on the individual

particles, it is still based on aggregated information in some sense.

5.4.2 Modelling with uncertainty – stochastic approach

The first entry in the definition of ‘Uncertainty’ in the Oxford dictionary7 is:

The quality of being uncertain in respect of duration, continuance,

occurrence, etc.; liability to chance or accident. Also, the quality

of being indeterminate as to magnitude or value; the amount of

variation in a numerical result that is consistent with observation.

These factors should be familiar to researchers dealing with modelling work.

Especially, travel behaviours which are not always clear because the decision

making process is often involving categorical choices (Bus or Car), which are

considered more complicated than continuous choices (100 or 50 miles).

There are two possible ways to handle uncertainty in the discrete choice

modelling with agent-based simulation, namely the fuzzy logic and the stochas-

tic (statistic) approach. Fuzzy logic is a rather computational approach and all

decisions have to be expressed by IF-THEN rules, and uncertainty in the fuzzy

7The Oxford dictionary online, http://dictionary.oed.com/
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logic is ambiguous, which is different from randomness and chance. For exam-

ple, a person can act exactly the same way if a situation is exactly the same

with the conventional IF-THEN rule-based codes (Raney et al., 2003; Schleif-

fer, 2005). However, this may not be true with fuzzy logic if a situation is

somewhere between the one of ambiguity (e.g. the fee is fairly expensive so I

may or may not get on the bus). With fuzzy logic, all choices are still described

in tree like IF-THEN rules and ambiguity is handled, so that any complex de-

cision can be expressed in this fashion. However, this is a double-edged sword.

Since all choices are expressed by IF-THEN rules, the amount of calculations is

enormous. This approach has been used in some studies (Wu et al., 2000; Peeta

et al., 2005) and will be used more often as computational power increases in

larger projects. Furthermore, these numerous IF-THEN rules are unobserv-

able in reality; therefore, it is likely to be impossible to justify IF-THEN rules

without validation and verification tests. In other words, IF-THEN rules can

be closer to the real decision making process at the theoretical level, but its

application can be difficult without any justification mechanism. These per-

formance and testing problems are resolved in the stochastic approach.

The stochastic approach to uncertainty has a longer history. In 1944, Neu-

mann and Morgenstern (1953) developed the formal theory of risk and un-

certainty as an economic approach, which has been applied to many decision

making problems including discrete choice models as mentioned earlier. The

stochastic approach in decision making has been explained in many ways in the

past such as relative frequency with probability (Ortúzar and Willumsen, 2001,

p.50) and as uncertainty associated with opponents’ decision making in mixed

strategy games (Rasmusen, 2001). Whatever the reason for the stochastic

process, the important things are that this approach speeds up simulation and

it enables the validation and verification tests of the decision making process

to be undertaken.
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Stochastic agent-based modelling

A physicist may support the idea of collective decision making since as every-

thing can be a mass of particles in a theoretical viewpoint. For example, if

the movements of all molecule particles in a human brain are found, the deci-

sion making of a human can be perfectly predicted. This is an extreme idea,

but this is similar to the essential concept in the agent-based modelling, i.e.

modelling from bottom up. According to the physicist’s idea, combined with

agent-based modelling, we can even find out the macroscopic social phenomena

from the study of molecule movements in human brains.

The problem is that the more complex a model is the slower the speed

of modelling is, with respect to the three types of speeds. First, there is the

relative running speed of modelling against reality. The model of social simu-

lation should run at least faster than reality (Raney et al., 2003). Otherwise,

reality will catch up with a prediction before the simulation finishes. Then,

the prediction is no longer a prediction in this sense and there is no point in

carrying out the research. Second, there is data collection speed in reality.

Disaggregated input generally needs more time to be collected. Then, if the

data collection cannot be finished before the end period of its prediction, the

data collection for the prediction is meaningless because the collected data

will be the result of the prediction. The third type of speed is the speed of an

agent’s reaction time against the change in the real environment. This does

not affect the main research because the environment that artificially exists in

a computer system has the same speed as an agent’s reaction time. However,

if a simulation model has an interface with the real world, like the online web

Minority Game in Chapter 4, it is an important matter. If the reaction time of

an agent takes a year, the reaction will be irrelevant to the environment since

the real environment changes at a much faster pace. So, the reaction of the
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agent does not reflect reality. More practically, people in the real world will

get bored and forget about the agent and the simulation.

There is a good example about the third speed in computational intelli-

gence of games as speed is the most important factor in this field (Baba and

Jain, 2001). IBM’s Deep Blue chess computer won a game against the world

chess champion, Gary Kasparov, in 1997 for the first time at a tournament

level (IBM, 2005). From the defeat of Deep Blue in previous year, the IBM

researchers stopped an exhaustive search into every possible position because

speed is the most important factor in chess. The faster a player moves, the

stronger he is since he does not give a chance to change the environment (i.e.

Gary Kasparov in this case). Thus, the situation is more predictable for the

player.

This Deep Blue example shows that it is important not to find every detail

in decision making, but to focus on the research target and speed even in the

faster computer and bigger project. The main concern of this agent-based

modelling is to analyse and forecast the effect of transportation policies on the

mode choice of visitors and on congestion. Duplicating the Upper Derwent

Valley and visitors’ movement in the PC is also an interesting topic, but this

should not be more important than the former concern when a real world

policy is analysed. Additionally, agents in the current project are the simplified

representatives of visitors to the Upper Derwent Valley. It is doubtful if real

visitors seek the perfect decision in the real world. If it takes too long to obtain

a perfect decision, the decision is no longer useful since the environment must

be changed by that time (Schleiffer, 2002).

A stochastic approach is the study to see the particular information re-

searchers are interested in from complex and noisy data. Therefore, the process

cuts down factors which ‘seem’ not to be important for the outcome and this

can be seen as the opposite process to the agent-based modelling approach.
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However, at least in the current research situation, it is important to consider

the speed of the agent-based model to reflect reality. Moreover, the stochastic

process is used in the decision making of agents as the multinomial discrete

choice model and this analysis has various validation and verification methods

as mentioned earlier. Therefore, the stochastic agent-based modelling real-

istically reflects reality more than the conventional agent-based model at a

practical level.

5.5 Conclusion and outline of successive chap-

ters

The previous section compared microsimulation and agent-based simulation.

The core of the simulation model in this thesis is the Minority Game, which is

categorised into an agent-based modelling. However, stochastic microsimula-

tion is partially used for traffic movement in the Upper Derwent Valley. Also,

multinomial discrete choice models as a decision making process of agents are

also a stochastic process. Therefore, the simulation model in this thesis is

termed as stochastic agent-based modelling.

The reasons to choose the stochastic approach over the cellular automata

and fizzy logic approaches are the better facility of testing methods and sim-

ulation speed. It is important to mention that these two reasons are consis-

tent with the ‘Aims at the theoretical level’ stated in Chapter 1 on page 4,

i.e. the facility of testing methods is for ‘reality of model ’ and the simulation

speed for ‘efficiency of model ’. This one sentence shows how the generative

approach8, which is the iterative process of the inductive and deductive ap-

proaches, worked in this thesis.

8This was explained in ‘The conceptual framework and the approach of research’ of
Chapter 1 on page 7.
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Since the stochastic approach has a longer history, the approach is facili-

tated with standardised testing methods at a practical level. In addition, the

stochastic approach makes the simulation run significantly faster than the cel-

lular automata and fizzy logic approaches. The issues on the simulation speed

will be solved in the future research of well-equipped projects. However, for

this thesis, this was the one important issue, since the best computer system, I

could use for this project, was my laptop computer with a Pentium M 1.6GHz

CPU and 750MB RAM. The same simulation on a Linux workstation with a

Xeon 2.4GHz CPU and 1GB RAM did not run significantly faster than the

laptop did. It is possibly because the computational resources had to be shared

with other researchers in the workstation, but not in the laptop. A normal sim-

ulation process of the stochastic agent-based model in this thesis took several

hours and long ones took from 24 hours to 8 days. Simulations have to run

every time when the input data and scenarios are changed, so that the slower

approach was impractical for this thesis. Hence, the stochastic approach was

chosen over fizzy logic and cellular automata approaches for the agent-based

simulation model and microsimulation model, respectively.

Figure 5.2 was shown in the first chapter and this figure represents the

overall structure of the stochastic agent-based model of this project and the

practical part of this thesis. The agent-based model has four sub modules:

1) Multinomial mixed logit model for mode choice, 2) Binary logit model for

parking location choice, 3) Markov queue model for parking network, and 4)

the Minority Game for parking congestion and learning. Chapter 6 analyses the

visitor characteristics and travel behaviour with econometric models by using

the first two modules. Chapter 7 develops the third module to simulate the

movement of cars with the Markov queue network theory, which is considered

as a microsimulation. Chapter 8 applies the Minority Game, which is discussed

in the theoretical part, while all other sub modules are combined together with
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the agent-based modelling approach. Then, the results lead to the final chapter

of this thesis.

Multinomial logit

model for
mode choice

Logit model

for parking

location choice

Minority Game for

parking congestion

and learning
Next run

Markov queue

for parking

network

Other agents

Figure 5.2: Structure of agent-based simulation
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Chapter 6

Econometric analysis of road

user charging at the Upper

Derwent Valley, the Peak

District National Park

6.1 Introduction

Private car use is a key component in the areas of outstanding natural beauty

because these locations attract many visitors from local and urban areas by car.

Transport policies such as private car access regulation or road user charging

scheme potentially improve traffic congestion and the values of natural beauty

by cutting visual intrusion and traffic noise. Therefore, today, policy makers

consider implementing road user charging scheme in the areas of outstanding

natural beauty. The Upper Derwent Valley in the Peak District National Park

is one of the proposed areas for this new policy tool.

This chapter analyses the scheme with the econometric tools namely multino-

mial discrete choice models. The choice models are also used as a decision
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making mechanism in the agent-based simulation model in Chapter 8. In this

research, the demand by the one-day visitor is focused on because it is the

major component of traffic in the Valley. First, this chapter analyses the char-

acteristics of the visitor. Then, the effect of a parking fee on a parking location

choice is discussed with a binary logit model and regression analysis. Following

this, future transport policies, road user charging and park & ride schemes,

are analysed by a multinomial mixed logit model with stated preference data.

6.2 Methodology of data collection

The road user charging scheme in the Upper Derwent Valley is still under

consideration, and there is no implemented road user charging scheme in a

similar situation yet (Steiner and Bristow, 2000, p.96)(Eckton, 2003, p.310),

so a revealed preference survey was impossible. Therefore, a stated preference

survey was used for the question about the mode choice among Auto (Toll &

drive), Bus (Park & ride scheme), and Cancel (Do not visit) options. Addi-

tionally, visitor characteristics and past trip experience were collected. The

full questionnaire for the main survey is shown in Appendix A. Although the

main concepts and methods used in this project are applicable to forecast en-

tire travel demand (Anabel, 2002), this study focuses on day trip travel to the

Valley due to the results from a pilot survey. The pilot survey showed that

the main components of travel demand during the busy period were the day

trip visitors from local towns and neighbouring cities, namely Manchester and

Sheffield.

6.2.1 Pilot and main surveys

The pilot survey took place between the 1st and 3rd of August 2003 in good

weather at around the first and second parking areas from the Information
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Centre. Out of 130 distributed questionnaires, 41 of them were returned. The

questionnaire was modified after careful examination of the responses. Only

the mode choice within Derwent Lane was focused on in the stated preference

questions of the main survey. Also, the questions about the actual modes and

routes to the Peak District National Park were deleted in the main survey

because the selections were complex so that it would have affected its return

rate.

The main survey was carried out for 9 days from the 23rd to 31st of August

2003 including the bank holiday Monday on the 27th of August. The air

temperature was cool and a short period of drizzle appeared during the survey

period; however, it was generally fine weather overall. Survey locations were

extended to the third parking area when the first two parking areas were

extremely busy. Additionally, a small survey was conducted in public buses

and at bus stops in the Valley. Overall, 700 questionnaires were distributed

and 323 of them were returned (i.e. a return rate of 46.1%).

6.2.2 Stated preference questionnaire design

During weekends and holiday periods, Derwent Lane beyond the Information

Centre is closed to private cars because of potential severe congestion. Visitors’

destinations are usually beyond the Information Centre, otherwise, visitors

relax around the Information Centre. Therefore, respondents were asked how

they would travel to the Information Centre if the road user charging and park

& ride schemes were put into effect in the Valley in ceteris paribus conditions

(e.g. with same trip members). In addition, the visitors to the Upper Derwent

Valley were expected to respond to the schemes in one of three ways:

‘Auto’ option: Pay a toll for road use and drive into Derwent Lane to get to

the Information Centre.
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‘Bus’ option: Come near the Valley with whichever travel mode, and then

use the complementary park & ride service to get to the Upper Derwent

Information Centre.

‘Cancel’ option: Cancel the trip to the Valley and instead go somewhere else

or stay at home

Terms used in the questions and the brief explanations of the road user charg-

ing and the park & ride schemes were given before the hypothetical questions

relating to mode choices. After reviewing previous research (Steiner and Bris-

tow, 2000; Fowkes, 2000; Ortúzar and Willumsen, 2001, p.283), four attributes

of the mode choices on travel time and costs were chosen, and four different

levels were selected for each attribute:

Road user charging (£): a toll to enter Derwent Lane from the A57

Park & Ride fare (£): a fare for bus service, which links local parking areas,

Bamford train station, and the Upper Derwent Information Centre.

Frequency of bus service (minutes): the period between departure times

of the shuttle buses.

Searching & walking time (minutes): the combination of searching time

for a parking space and walking time from the parking area to the Infor-

mation Centre.

Parking fee difference (£): the difference between parking fees for the Auto

and the Bus. The parking fee for the park & ride service is the fee visitors

pay when they park their car before getting on a bus. The parking fee

for toll & ride is the fee visitors pay when they park their car at one of

the four parking areas along Derwent Lane.
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The four levels were determined by using the boundary value evaluation tech-

nique (Fowkes, 2000). For the question about “parking fee difference”, two

sub-attributes were used – i.e. parking fees for the Bus and the Auto. The four

values of all attributes were equally distributed in the 16 fractional factorial

experiment and the design of 16 questions is known as a lattice square1 (Table

6.1). This is explained in Section 6.5.1, but these four alternative specific vari-

ables were converted into generic variables comprising travel time and costs

due to the insignificant log-likelihood test2 (McFadden, 1974). Combined

Table 6.1: 16 hypothetical questions and attributes

Q. Toll fee Bus fare Headway Seach & Walk Parking fee (£)
(£) (£) (min) (min) Auto Bus Difference

1 20p £1.00 5 1 50p 10p 40p
2 20p £2.00 15 30 £2.50 50p £2.00
3 20p £3.00 30 50 £1.00 50p 50p
4 20p £5.00 45 15 £2.00 50p £1.50
5 50p £1.00 15 15 £1.00 50p 50p
6 50p £2.00 5 50 £2.00 50p £1.50
7 50p £3.00 45 30 50p 10p 40p
8 50p £5.00 30 1 £2.50 50p £2.00
9 80p £1.00 30 30 £2.00 50p £1.50

10 80p £2.00 45 1 £1.00 50p 50p
11 80p £3.00 5 15 £2.50 50p £2.00
12 80p £5.00 15 50 50p 10p 40p
13 £1.00 £1.00 45 50 £2.50 50p £2.00
14 £1.00 £2.00 30 15 50p 10p 40p
15 £1.00 £3.00 15 1 £2.00 50p £1.50
16 £1.00 £5.00 5 30 £1.00 50p 50p

attributes were presented in Figure 6.1, and respondents were asked to rank

their preferences from the three stated options 1) Auto, 2) Bus, and 3) Cancel.

1For example, each variable in an n × n lattice square has k = n levels. No orthogonal
(row in this case) contains the same number twice (Lindner and Rodger, 1997). This is also
known as latin square.

2See the footnote on page 89
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Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 20p per person Toll £2.00 per car

A bus every 15 minutes Searching for a parking space

and walking to the centre

takes 30 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ ] Park & ride

[ ] Pay toll and drive

[ ] None of them (don’t visit the valley)

Figure 6.1: Example of stated preference question

6.2.3 Questions about characteristics and travel behav-

iour of visitors

Besides the hypothetical stated preference questions, revealed data was col-

lected in the same questionnaire. For example, respondents were asked about

their profession and incomes in the earlier section, and asked about the de-

parture and arrival times and costs of their trips in the later section. Travel

behaviour questions, similar to Anabel’s (2002) work on memories about past

trips, were briefly asked. Some revealed preference data were utilised with the

agent-based modelling in Chapter 8. The final question was the maximum

willingness to pay (WTP) to drive into Derwent Lane (i.e. road user charg-

ing). Initially, this question was asked to check if there was any bias in the

stated-preference questionnaire since this was a known problem (Sugden, 1998,

316–317) (Section 6.3.2); however, this question was also utilised in the discrete

choice model of parking location (Section 6.4.2).

6.3 Characteristics of visitors

6.3.1 Distributions of age, income, origin, and travel

frequency of visitors

Only 16% of visitors came from the local council area, Derbyshire, probably

because of the survey period. This survey was carried out during the busiest

time of the year, and local visitors might have avoided visiting the Valley during
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the busiest period (‘Visitors’ origin’ in Figure 6.2). However, most visitors (60%)

to the Valley came from local towns and the neighbouring cities comprising

of Manchester and Sheffield. The Upper Derwent Valley is easily accessible

for the visitors from these two cities via the A57. For example, a visitor from

Sheffield drives 20 minutes to the Valley about three times a week just to take

a walk with his dog. Therefore, for these visitors, the Upper Derwent Valley

is like a large backyard where they relax and take a walk.
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Figure 6.2: Proportions of visitors’ characteristics

The age distribution of visitors is highly skewed, and two modes at ‘35-

44’ and ‘55-64’ are present in the distribution (‘Age’ in Figure 6.2). This age

distribution matches the observations made during the survey. Most visitors I

met during the survey were either families or elderly visitors, and they could

represent the two modes mentioned earlier, i.e. families for ‘35-44’, and elderly

visitors for ‘55-64’. In addition, income distribution (‘Income’ in Figure 6.2)

also supports this trend. Some 20% of visitors to the Valley are non-workers,

and most of these visitors are elderly people, since the proportion of students

is nominal (i.e. 5%).
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6.3.2 Distribution of willingness to pay to the road user

charging

The average willingness to pay (WTP) to the road user charging scheme is

£2.373 with a standard deviation of £1.75. However, the median of £2 seems

to be a better representation of the central value. The distribution of the WTP

is fairly normal with m=2 and σ=1 except for the small peak at £5 marked

with an arrow in Figure 6.3. Also, the distribution is even closer to the normal

distribution after omitting the observations of the WTP = £5 (i.e. WTP[!=5]

in Figure 6.3). No clear reason for the small peak was found except for possible
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Figure 6.3: Density of the WTP

questionnaire bias. The previous section before this open-ended WTP question

was the stated preference questions, and the highest value of the road user

charging stated in the questions was £5. Thus, although no upper boundary

was set for the question of the WTP, some respondents probably had assumed

the upper boundary of £5 from the previous questions. The same questionnaire

bias of assumed upper boundary in the WTP from previous questions was also

observed in previous studies (Eckton, 2003, p.312). As a result, the upper tail

of the WTP distribution would be elongated if respondents did not assume that

the upper boundary was £5, and this meant that the sampled distribution of
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the WTP was possibly under estimated.

Therefore, from the observations above, the major components of visitors to

the Upper Derwent Valley are families and elderly people from the local areas,

Manchester, and Sheffield. Moreover, the central value of the WTP to the

road user charging scheme is approximately £2.

6.4 Effects of the parking fee at the Informa-

tion Centre as a current policy tool

6.4.1 Differences in the behaviours of parking costs by

age, travel frequency, and region

In this section, the parking behaviours are analysed with respect to travel fre-

quencies and parking costs. The only policy tool to suppress the private car

use in the Upper Derwent Valley is currently a parking fee charged at the In-

formation Centre. It is wise to buy a day ticket rather than pay per hour if

parked at the Information Centre for more than five hours due to the charging

system. The average hours visitors spend at the Valley is 4.1 hours3. Conse-

quently, most visitors either buy a day ticket or go to the other the parking

areas where they are not charged for parking. So, the distribution of parking

costs is bimodal of ‘0 pounds’ and ‘2.5 pounds’ (Table 6.2). Furthermore,

the distributions of parking cost are different among age categories (Figure

6.4), and the categories of visiting frequencies to the Valley (Figure 6.5). Be-

tween the ages of 18 and 24 and under the age of 18, approximately half of

visitors parked at the Information Centre with a day ticket and the other half

3A standard deviation is 2.11 hours and the Shapiro-Wilk statistic (p-value = 0.98) shows
samples significantly come from a normal distribution.
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Table 6.2: Parking costs at the Information Centre

Park fee (£) 0 0.5 1 1.5 2 2.5
Parking time up to – 1hour 2hours 3hours 4hours 1day
Park at Information Centre? No Yes Yes Yes Yes Yes
% of visitor 26.8 5.1 2.9 1.0 6.4 58.0
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Figure 6.4: Parking cost by vis-
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parked at the other parking areas. In contrast, no more than the 30% of vis-

itors who are older than 25 and only 18% of visitors who are older than 65

did not park at the Information Centre. This difference among age categories

may be partially due to an income effect. However, the distribution of parking

costs by income categories does not show a similar differentiated pattern as

clearly as that of age. Therefore, not only income but also other effects, such

as distance from the Information Centre, contribute to the difference in the

age categories. Even though the distance from the nearest free parking area

(Derwent Overlook) is only 557 yards (ca. 510 metres) from the Information

Centre, the distance could be too long for babies in young families and elderly

people. Moreover, many families and elderly people brought chairs and other

large equipment with their cars to relax around the Information Centre. It is

difficult to carry the equipment by hand even for a few hundred yards.
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Figure 6.6: Visiting frequences between two regions

The distributions of the parking cost by the frequencies of visits are different

(Figure 6.5). As shown in the figure, frequent visitors are less likely to park

their car at the Upper Derwent Information Centre and thus avoid the parking

fee. In contrast, the infrequent visitors do not mind paying £2.50 for a day

ticket as much as frequent visitors do. This trend is easily predictable, e.g. you

may not go to the Valley every week if you pay parking fees every time you

visit, so you park somewhere else to visit the Valley more frequently.

Furthermore, the visiting frequencies are different between local areas in-

cluding Manchester and Sheffield and other regions. Cochran-Mantel-Haenszel
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Chi-Square statistic4 was used to test the equal distribution of visiting frequen-

cies. The result shows a p-value below 0.01, which means the distribution of

visiting frequencies to the Valley is significantly different between the visitors

from local area and other locations. This difference is predominant at the

frequency levels below ‘every other month’, i.e. 1/1wk, 1/2wk, and 6-12yr in

Figure 6.6. Some 27.0% of visitors from local areas come to the Upper Derwent

Valley at least every other month. In contrast, only the 12.8% of visitors from

other areas come to the Valley at least every other month.

6.4.2 Discrete choice analysis of parking location

As explained above, the distribution of parking costs is rather categorical,

‘Park’ or ‘Not park’ at the Information centre, and a binary logistic model was

used with BIOGEME5 (Bierlaire, 2003). If drivers park at the Information

Centre, they do not need to walk to the centre, but they have to pay parking

fees. In contrast, if the drivers do not park at the Information Centre, they

have to walk to the Information Centre, but they do not have to pay the

parking fees. The results of logit model shows a similar trend as the parking

cost and visitors’ characteristics in the previous section. The three significant

factors in the logit model are visitors’ age, visiting frequency per year, and the

WTP to the road user charging (Table 6.3). The observed utility functions for

the two choices are:

1st parking area: V 1
i = βoften(No. of visit) + βage(Age) + βWTP(WTP)

(6.1)

Other parking area: V O
i = αOther (6.2)

4This is an appropriate test when both variables, such as the visiting frequency and
locations (travel time or distance) in this analysis, lie in an ordinal scale (SAS Institute
Inc., 1999)

5http://roso.epfl.ch/biogeme
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The age of a trip leader is a categorical variable and its coding is: if age < 18 =

1, else if age < 24 = 2, else if age < 35 = 3, else if age < 45 = 4, else if age < 55

= 5, else if age < 65 = 6, else if age > 65 = 7. The categorical age variable is

commonly used in transport modelling (Bierlaire, 2001). Robust t-statistics for

the zero coefficients are significant for all three factors and alternative specific

constant (ASC), αOther. Income level, travel hours from home to the Valley,

and the hours respondents spent at the Valley were not significant factors in

this model. No interaction terms are also significant. Income is unexpectedly

insignificant because the relationship between income and car usage is com-

monly used (Redmond and Mokhtarian, 2001). However, the insignificance of

the relationship has been observed in some studies (Tsamboulas, 2001). The

Table 6.3: Binary logit model for parking location choice

Robust Robust
Coefficient Estimate Std. Error t-value
αOther 1.240 0.518 2.395
βoften -0.033 0.015 -2.251
βage 0.214 0.104 2.051
βWTP 0.229 0.084 2.737

Number of observations = 268
L(0) = -185.763

L(β̂) = -144.046
ρ̄ = 0.203038

logistic form of the fitted model used for the results is below:

P (1st parking area) =
exp(U1

i )

exp(U1
i ) + exp(UO

i )

U∗
i is unobserved utility including an error term, i.e. Ui = Vi + εi. The positive

ASC means that visitors prefer to park at the other three parking areas if

all the three variables are the same, e.g. the visitors possibly want to avoid
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the parking fees. The cost effect is stronger than comfort effects by parking

close to the Information Centre. Walking time and parking fees could not be

integrated into the model in this study, but these effects can be captured with

the stated preference questionnaire in future research. According to this model,

the probability of parking at the Information Centre rises as age increases at a

given WTP and frequency of visit level. In contrast, the probability declines as

a visitor travels to the Valley more often. The positive relationship of age and

the negative relationship of visiting frequency are consistent with the result

displayed in Figure 6.4 and 6.5 in the preceding section.
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Figure 6.7: Probability of parking at the centre with the WTP=£2

For example, if a visitor is 60 years old, the WTP is £2, and the visiting

frequency is once a month, the probability the visitor parks at the Information

Centre is 52.6% (‘B’ in Figure 6.7). In contrast, if a visitor is 30 years old,

the WTP is £2, the visiting frequency is every week, the probability is 13.3%

(‘A’ in Figure 6.7). Therefore, elderly visitors want to park their car right in

front of the Information Centre even though they have to pay a parking fee of

up to £2.50. This behaviour is probably due to the physical disadvantages of

the elderly to younger visitors because an income effect is not observed in this
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model. This trend is more emphasised as a visitor travels to the Valley less

frequently.

Another important point is the positive relationship of parking location

with the WTP to road user charging. The positive relationship means that if

a visitor’s WTP is more than those of others, they are likely to park at the

Information Centre and buy a parking ticket. This binary logit model does

not show causation, so the relationship between the WTP and parking location

could be the other way around. This is discussed further in the next section.

From the modelling estimation, an equity problem is clearly presented with

the current monetary policy tool, a parking fee. Elderly visitors are more

willing to pay the parking fees to park at the Information Centre. In other

words, elderly visitors are more disadvantaged when required to pay parking

fees. Also, this policy tool may affect visitors differently by their travelling

origins since visitors from local areas travel more frequently to the Valley than

other visitors do. This example shows how a monetary policy tool causes an

uneven effect to visitors.

6.4.3 Relationships of parking locations with willing-

ness to pay road user charging

The decision on parking or not parking at the Information Centre shows the

positive relationship with the WTP to the road user charging. Additionally,

income level has a positive relationship with the WTP. The factors of age

and the visiting numbers, which show a significant relationship with parking

location, are not found significant with the WTP. No interaction effects are

found significant. Therefore, the fitted linear functions from the regression
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Table 6.4: Regression analysis for the WTP

Coefficients: Estimate Std. Error t-value Pr(< |t|)
(Intercept) 1.269 0.340 3.730 0.0002
Income (×£k/yr) 0.030 0.009 3.187 0.0017
Park location 0.642 0.293 2.190 0.0297

Overall R2: 0.0747

model are below:

Not park at the Centre: WTP = 1.269 + 0.03(Income)

Park at the Centre: WTP = 1.911 + 0.03(Income)

This means that visitors who parked their car at the Information Centre

pay 64.2 pence (£1.911 minus £1.269) more than the others do for road user

charging. This looks like a small amount; however this is not negligible since

planned road user charging (toll) will be no more than £3 (Derbyshire County

Council, 2003, per. com.), i.e. the effect of parking location is at least a quarter

of the toll. The positive coefficient of income is a standard effect for any WTP

analysis. If visitors earn more income, they do not mind paying a few extra

pounds to visit where they want. The difference between the two groups is
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Figure 6.8: Difference between the WTP and maximum toll fee
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more remarkable in Figure 6.8. For example, if the local authority charges toll

fare at the maximum planned amount (i.e. £3), the user deficit6 of visitors will

be generated as shown in the triangular zones (A) in Figure 6.8. The WTP to

the road user charging scheme is lower than the toll fare at any given income

level in the triangular zones. Similarly, the other triangular zone marked (B)

is user surplus7 since the user pays less than what they are actually willing to

pay. Then, the user deficit is much larger in the group of “Not parking their

car at the Information Centre”. The user surplus for this group (i.e. left side

of Figure 6.8) is almost invisible in this scenario, i.e. suggesting that the £3

fee is too expensive for this group.

Consequently, the effects of the road user charging scheme will not be the

same for all visitors to the Upper Derwent Valley. Some visitors avoid paying

a parking fee and so they will be more reluctant to return to the Valley after

the implementation of the scheme. This is a problem of the road user charging

scheme, i.e. everyone pays the fixed fee no matter what is your WTP is (Eckton,

2003, p.309). This will be discussed in more detail in Section 6.5.2.

In conclusion, the parking fee scheme at the Information Centre had an uneven

effect on visitors by age, visiting frequency, and the origin of travel. Similarly,

the WTP effect was different between visitors parking at the Information Cen-

tre and at the other parking areas. The income effect of the potentially new

policy, namely the road user charging scheme, was not observed. Therefore,

this policy has a potential equity problem. Moreover, the results of this section

showed the strong positive relationship between the WTP and parking loca-

tions that were also related with the parking costs. These two policy tools have

the problem of double charging, i.e. the visitors, who are willing to pay a toll

6User deficit is the sum of price paid minus WTP in a population where WTP is lower
than the price.

7User surplus is the sum of WTP minus price paid in a population where WTP is higher
than the price.
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fee, are likely to pay a parking fee. In the next section, the travel behaviours

with the potential road user charging scheme and the complementary park &

ride scheme are analysed with stated preference data.

6.5 Potential effects of the road user charging

and the park & ride schemes

6.5.1 Results from the multinomial mixed logit model

of mode choices

This section analyses potential mode choice of visitors after implementing the

road user charging and park & ride schemes. The results in this section is a

key output to compare and integrate with that of agent-based modelling in

Chapter 8.

Overall, 48 respondents did not answer the section of stated preference

questions properly; so 275 questionnaires were used for this analysis. The

respondents were asked to answer their preferences in the questions by ranking

them (i.e. the most preferred option is 1 and the least one is 3); however, the

data set was transformed to binary data (i.e. the most preferred option is 1

and the rest of the options are 0). All possible combinations of models with

several input variables and alternative-specific constants (ASCs) were tested.

The correlations among three alternatives were insignificant, so that nested

logit8 and the error component model of mixed logit model9 were also insignifi-

8The nested logit model is derived when the random components have identical and
non-independent Gumbel distribution, i.e IIA is invalid. The nested logit model solve this
problem with decision-tree like structure. The assumption of independence of choices is
retained only at each single node of the tree (McFadden, 1981). The structure is similar to
the decision tree, but the decision may not necessarily to follow the sequences of a tree.

9The error component model tries to capture the correlation between alternatives, which
share unrevealed attributes. Therefore, the idea is similar to that of the nested logit model
explained above.
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cant. The reason for the insignificant correlations among alternatives could be

due to a simultaneous decision making process since destination (Trip | Can-

cel) and mode (Bus | Auto) are likely to affect the processes simultaneously in

this situation (Steiner and Bristow, 2000, p.99).

The heteroscedastic taste of time and cost with multinomial mixed logit

model are significant, but no socio-economic factors are significant. Possibly,

socio-economic factors are efficiently captured by the taste variation of the

mixed logit model10.

The insignificant group size can be explained by the discussion on the

marginal or average road pricing principle (Nash, 2003; Rothengatter, 2003).

In this case, road user charging seems to be as effective as the marginal pricing

principle, so that the additional trip members is not as important as the first

member to calculate the travel cost, i.e. the toll is not simply divided by the

number of trip members.

Recent studies show Johnson’s SB distribution11 for the taste variation is

more consistent with the microeconomic theory due to “the non-zero proba-

bility of positive coefficient” for travel related variables (Train, 2003; Hess et

al., 2005). Although the normal distribution is most commonly used for the

mixed logit model, the taste variation reaches the unexpected range from the

microeconomic theory since the distribution is unbounded. In other words,

with the normal distribution, the travel time and cost can positively affect

the choice of Auto for some individuals. However, the normal distribution is

unbiased in a mathematical view and the accuracy to estimate an expected

value could be better than the Johnson’s SB distribution (Hess et al., 2005,

p.233). The mixed logit model with SB distribution was not significant in this

analysis, so the multinomial mixed logit model with the normal distribution

10See the explanation on page 21
11Johnson’s SB distribution is similar to the logit transformation of the Normal distribu-

tion, but the distribution is bounded by the upper and lower limits.

118



was selected for analysis. Moreover, the lagged dependency from former to

successive questions was inevitable in this situation since the data were col-

lected by a stated preference survey, so that a panel data structure was also

applied (Honore and Kyriazidou, 2000). The best-fitted utility functions with

the multinomial mixed logit model are:

Auto: V A
i = αAuto + βcost(Toll + Parking fee) + βtime(Search & walk)

(6.3)

Bus: V B
i = βcost(Bus fare + Parking fee) + βtime(Headway) (6.4)

Cancel: V C
i = αCancel (6.5)

The log-likelihood ratio test (McFadden, 1974), which compares the model

fitness of a generic model with that of a specific model, showed that the para-

meters for costs and time are generic. Thus, no alternative specific coefficient

is present in these utility functions. Also, the test showed the multinomial

mixed logit model significantly improves the model fitness compared with the

conventional multinomial logit model. These functions do not show a mean

and standard error for the coefficients of cost, time, and lagged dependent

variable, but these are expressed in the summary statistics for the estimates of

the utility functions (Table 6.5). The cost and time attributes are presented

in pounds and minutes, respectively.

For example, the logistic form of the fitted model for choosing the Auto

option is:

P (Auto) =
exp(UA

i )

exp(UA
i ) + exp(UB

i ) + exp(UC
i )

The other logistic forms for the other two options are similar to the one above.

As mentioned before, U∗
i is unobserved utility including an error term, i.e.

Ui = Vi + εi. The base unit of this model is a visitor group with an average
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Table 6.5: Multinomial mixed logit model with normal distributed taste
and panel data structure for mode choice. m and σ represent the mean and
a standard error of a coefficient, respectively.

Robust Robust
Coefficient Estimate Std. Error t-value
αCancel -4.627 0.299 -15.497
αAuto 1.873 0.141 13.277
βcost m -0.704 0.040 -17.463

σ 0.089 0.043 2.058
βtime m -0.051 0.003 -15.019

σ 0.025 0.004 7.120
lagged m 0 - -

σ 3.070 0.222 13.819

Number of observations = 3840
L(0) = -4218.67

L(β̂) = -2730.05
ρ̄ = 0.351

membership of 2.99 people, but not an individual. Modelling based on individ-

uals could be preferable. However, the same visitor group travelled together by

the same mode, and the purpose of road user charging scheme is to reduce the

number of cars going to the Valley. So, the model based on visitor groups is

sensible for the purpose of this road user charging scheme. All six coefficients

have no significant correlation with one another as calculated by the robust

t-test.

6.5.2 Explanation and discussion on outcomes

The positive αAuto shows a preference of Auto when the rest of the all remaining

variables are constant. Similarly, the strong negative αCancel shows that the

trip to the Valley is of great value to visitors. αAuto is different from the average

WTP for toll fee in Section 6.4.3. This means that the decision making process

of visitors is rather complex and involves many factors including travel time

120



and cost. As expected, the trip related time βtime and cost βcost coefficient

have negative signs. The higher the cost or time of an options is, the lower the

utility is. Consequently, an option with strong negative coefficients is less likely

to be chosen. The standard errors express that the probabilities of negative

coefficients are > 99.99% for βtime and 97.93% for βcost. Therefore, the problem

of positive coefficient is negligible. The positive coefficients are irrational,

but the probability of irrationality is small enough to be expressed by the

mis-perception and mis-calculation. In addition, the positive time coefficient

can be explained by the pleasure of walking and driving (Mokhtarian and

Salomon, 2001; Redmond and Mokhtarian, 2001). For example, some visitor

may enjoy walking time from the third parking area to the Information Centre.

A lagged dependent variable is fixed to zero so only the standard error is

estimated12. In this case, the value of time was 7.24 pence per minutes13. This

is close to the non-commuting values of time in the report from the Department

for Transport, i.e. 7.55 pence per minute14 (Department for Transport, 2004).

Figure 6.9 visualises the results from the multinomial mixed logit model.

Toll and searching & walking time are the concerns of this project, so the figure

shows the probability of each mode that is chosen according to the change in

these two variables. The parking fee for the Bus option is 50 pence, bus fare is

50 pence, and headway is 30 minutes according to the interview from the local

authority. The Auto option has a negative trend, and the Bus and Cancel

options have a positive trend against the toll fee. As the toll rises, visitors are

likely to stop using their private cars and start using public buses to get to the

Valley. Simultaneously, some visitors decide not to go to the Valley and go the

12The purpose of a lagged dependent variable is to control the variation from one ques-
tion to another within an individual. Therefore, this should not affect the result between
individuals. Hence, the mean value is fixed to zero

13Value of time = βtime/βcost; so, -0.051/-0.704 = 7.24 pence per minute.
14£4.46 (non-working hour in 2002 price) / 60 minutes × 1.0158 (non-work value of time

growth from 2002 to 2003) = 7.55 pence per minute
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somewhere else or stay at home. However, this trend is not as strong as that of

a mode-shift from Auto to Bus. Additionally, when the left side of the graphs

(i.e. A, C) and the right side of the graphs (i.e. B, D) are compared, the strong

effect of parking fee are recognised, which favours the Bus option. The effect

of “searching time for a parking space and walking time to the Information

Centre” works in a similar way as the effect of parking cost. Therefore, visitors

in the top right graph (B in Figure 6.9) use the Bus option relatively more than

the visitors in the bottom left graph (C in Figure 6.9) at any given toll level.

All three effects seem to show sensible results in the situation of the Upper

Derwent Valley.

The road user charging and the supplemental park & ride schemes are

not yet put into effect, so strictly we cannot assume “Travel by car = Auto

option”. Therefore, the result may not be able to describe the current situation

of travel behaviour around the Valley. Nevertheless, the travel behaviour at

the Information Centre should be similar to the bottom right graph of Figure

6.9 (D). The parking behaviour of avoiding any parking fee at other parking

area should be similar to the top left graph of Figure 6.9 (A). A visitor, who

parks at the Information Centre, pays a parking fee and spends nominal time

for searching and walking. Therefore, the visitor is more likely to change a

travel mode from Auto to Bus compared to the other visitors arriving directly

at the other parking areas.

After the implementation of schemes with the £3 toll fee, the probabilities

of travel mode are the ones shown in Table 6.6. More than half of visitors, who

used to park at the Information Centre, are likely to keep using their own cars

to visit the Valley. In contrast, more than two third of the visitors, who used

to park at the other parking areas, are likely to keep using their own cars to

visit the Valley. This result shows that the effect from the road user charging

scheme is not equal for all types of visitors. Elderly and infrequent visitors
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Figure 6.9: Results of logit model
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are more likely to be affected by the road user charging scheme. They are

most likely to park at the Information Centre, so that they are more likely to

change their travel mode from private car to public bus than the other types

of visitors are. Therefore, the road user charging scheme has a possible equity

problem as Eckton (2003) suggested. On the other hand, the purpose of the

road user charging scheme is to maintain the congestion level around Derwent

Lane, and it is, consequently, effective to achieve this policy aim.

Table 6.6: Expected probabilities of each mode choice between parking
locations. W + S stands for search and walking minutes and Parking means
parking fee for the Auto option.

Park at Toll W + S Parking Probability
(pounds) (mins) (pounds) Auto Bus Cancel

Centre 3 0 2.5 0.54 0.42 0.04
Other 3 20 0.0 0.71 0.27 0.02

6.6 Conclusion

This economic analysis of road user charging, first, identified the characteristics

of one-day trip visitors to the Upper Derwent Valley. Most visitors come from

local areas and two neighbouring cities and a large number of visitors are

families and elderly people. Second, the characteristics of visitors were different

among different parking areas. The parking locations were strongly correlated

with the current policy tool, parking fee, so the policy tool affects visitors

differently. Finally, the analysis with the stated preference data and the WTP

to road user charging showed that the proposed road user charging and the

park & ride schemes had equity problems. The equity problem is discussed

again in the agent-based model analysis in Chapter 8 with the scenarios of

elderly exemptions for the toll fee.
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On the other hand, this econometric approaches, which conduct analysis

solely with discrete choice models, has significant shortcomings. The multino-

mial mixed logit model for mode choice could not utilise the socio-economics

characteristics of visitors in this case study although these characteristics were

found significant in the parking location choice model.

Furthermore, the analysis solely with discrete choice models lacks the mech-

anism to observe the dynamic process of travel behaviour. This mathematical

model does not show how visitors change the trip modes after the implemen-

tation of the schemes. Moreover, since any model about the parking network

in the Upper Derwent Valley is absent in this analysis, the congestion level at

each parking area is unclear. For example, we assume, by using the parking

location model, that a visitor can definitely park at the Information Centre if

the visitor decides to park there in the parking location model. This is be-

cause these models cannot formulate the concept of congestion, which requires

dynamic interaction among the visitors – an example of “Oversimplification”

(Stopher, 2004). These problems are overcome by the agent-based model,

which dynamically models the traffic situation in the Upper Derwent Valley

and considers visitor-interactions with the discrete choice models. The parking

network is modelled in the next chapter.
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Chapter 7

Markov-queue-like

microsimulation of dynamic

parking network

7.1 Introduction

This chapter explains the parking network modelling of the Upper Derwent

Valley. The two main objectives of this chapter are: 1) to model a dynamic

networked parking model, which represents the situation of the Upper Derwent

Valley, and 2) to determine the searching time of a parking space and walking

time between the parking space and the primary destination assumed to be the

Information Centre. The parking microsimulation model formulates congestion

levels, searching time, and walking time for agents and is used as a module in

the agent-based simulation model in the next chapter.

The reason for the first objective is that the previous chapter, which con-

ducted analysis solely with discrete choice models, did not explain the mechan-

ics of a parking network system in the Valley, which is the necessary concept

for assuming parking congestion and the interaction of agents. The reason for
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the second objective is that it is infeasible to collect dynamic searching time

and walking time from surveys. Although some studies have used survey tech-

niques to identify searching time (Axhausen and Polak, 1991), this approach

cannot be applicable to the current study. From pilot survey, car drivers were

found not to remember the exact searching time and walking time, or only

answered the approximate time, such as 5 or 10 minutes. Known as a complex

problem (Fortin and Rousseau, 1998; Casini and Macar, 1999; Bugmann and

Coventry, 2004), the abstract cognition on travelling and walking time could

be a D.Phil. topic. Additionally, conventional econometric search models with

survey-based data are known to have problems due to the assumption1 made in

the econometric model (Thompson and Richardson, 1998, p.163). Moreover,

it is not feasible to follow cars, which enter the parking network system, until

they found a parking space to measure the searching time. The parking net-

work system is defined as the series of four parking areas in the Upper Derwent

Valley, which work like a system at a macro level view. While following a car, a

researcher loses track of other cars, so that this approach needs an unnecessary

large number of researchers. The survey with GPS tracking devices will be the

way for future research, but it is also infeasible for the current research.

In contrast, arrival rates into the parking network system are easy to mea-

sure at the input point of the system. Parking time is also obtained easily by

questionnaires since car drivers have a good memory about the arriving time

at a parking area and departure time from a parking area. With the Markov

queue theory (Chernick, 1999; Hinkley, 1988), departure rates are calculated

1This approach assumes that decision makers are risk neutral, have an unlimited time
budget, face constant search costs, have full recall and possess a perfect knowledge of the
utility distribution. However, since parking areas may be only temporarily available, the
rejection of a parking area at any point in time means that it may not be available when
and if the visitor decides to return to it at a later stage in the current trip. This general
‘lack of recall’ relating to the availability of previously inspected car parks, results in the
current alternative being the most appropriate basis of comparison in the calculation of the
expected gain in utility when deciding whether or not to continue the search.
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from parking hours, i.e. the departure rate of the parking network system is the

inverse of parking time. Simultaneously, the congestion level of a network sys-

tem can be estimated with the Markov queue model. The major factor, which

determines searching time, is a congestion level in a parking area, so searching

time can also be estimated with the Markov queue model. A parking location

is determined after a car driver finds a parking space and consequently walking

distance and time are approximated though this process.

The mathematical Markov queue model of a parking network was consid-

ered first. However, previous studies showed that it was difficult to implement

this approach to solve real world problems, so that simulation approaches had

been recommended (Arnott and Rowse, 1999). The simulation model, which

describes the parking network system of the Upper Derwent Valley, is based

on a Markov queue model. This is one of the most popular stochastic models

(Ripley, 1987, p.104) and one of the two most popular microsimulation trans-

port models (Nagel, 2004). A Markov queue model is influenced only by a

defined process and a current state, but not by past states to forecast the next

state. This is called Memoryless property (Norris, 1997). In most cases, the

process is based on an arrival rate to a system and a departure rate from a

system. Additionally, time-driven and event-driven concepts are added to the

Markov queue simulation model and these concepts are explained from Section

7.5.2. First, this chapter estimates the arrival rate into the parking network

system and departure rate from the system. Then, the statistical simulation

of a Markov queue model is used to duplicate the dynamic parking situation

of the Upper Derwent Valley. Following this, the simulation model is used to

find the searching time and walking time of car drivers. As discussed in the

previous chapters, this parking model also focuses on the holiday periods.
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Base unit of microsimulation

This chapter uses ‘car’ instead of ‘visitor’ as the base unit of the simulation

model to distinguish the entities between them. Visitors in the last and next

chapters have characteristics and are more intelligent than the cars in this

chapter. Therefore, the visitors are called agents in the two chapters. In

contrast, the base unit in this chapter is a homogeneous particle, but not an

intelligent agent. Therefore, this simulation model is microsimulation, but

not agent-based simulation model (See Section 5.4.1). Having said that, some

terms like ‘walking time of a car driver’ are used in this chapter since ‘walking

time of a car’ does not make sense.

7.2 Background of Markov queue model

The networked queue model (Hopcroft and Ullman, 1979) and cellular au-

tomata2 are the two most popular microsimulation approaches (Nagel, 2004).

The advantage of the queue model is simplicity and consequently the simula-

tion speed (Raney et al., 2003). This was the reason this study implemented

the queue approach. In addition, this is the same rational for DynaMIT3 (Ben-

Akiva, 2005), which is one of the most well-known software tools for microsim-

ulation in transportation research. The disadvantage of the networked queue

approaches is the limitation in modelling intersections and inhomogeneous cars

(Febbraro and Sacco, 2004). Therefore, the cellular automata approach is more

appropriate for detailed study of car movements (Lee et al., 2001). However,

the main problem is speed. For example, the simulation of this study had to

be run much faster than that of Lee et al. (2001) since a time-step in the model

developed here was equivalent to an entire simulation period in the work of Lee

2See the footnote on page 92
3http://mit.edu/its/dynamit.html
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et al.. This means that the current model needs to run the other simulation

process a thousand times to complete one simulation process.

Moreover, from another perspective, the queue model is more realistic than

the cellular automata when the approach is combined with the event-driven

simulation, which is explained in detail in Section 7.5.2. The event-driven

networked queue model uses a continuous time-line. In contrast, the cellular

automata model has to use a discrete time-line, e.g. moving every 10 seconds.

This is the reason for the cellular automata being significantly slower than

the queue model (Nagel, 2004; Febbraro and Sacco, 2004). Furthermore, the

event-driven approach is extremely fast in the single CPU environment, which

is the situation of this study.

7.3 Distribution of data on arrival and depar-

ture rates

As stated above, the research started with identifying the arrival and departure

rates for the Markov queue model. In Markov processes, the distribution of the

arrival and departure rates are usually considered as coming from the Poisson

distribution. In other words, the main purpose of this section is to validate

Markov queue modelling. The distributions of rates are checked if they come

from the underlying distributions by the bootstrap method, which treats the

collected data as an hypothetical population and re-samples from it (Efron,

1979; Davison and Hinkley, 1997). As well as other statistical analysis, the

bootstrap simulation method was conducted with R4 (Ihaka and Gentleman,

1996).

4http://www.r-project.org/
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7.3.1 Data collection and description of field

The departure rates at each parking areas were collected from parking beat

surveys, which were undertaken over three days, namely the 23rd, 26th, and

27th of August 2001, by the Transport Office of Derbyshire County Council.

The 23rd of August 2001 was a normal summer weekday, in contrast, the 26th

and 27th of August 2001 were a Sunday and the summer bank holiday, which

were usually the busiest days in the Valley. All parked cars were recorded, so

the data set acted as a population. In total, 1961 cars were recorded. When

the data was tabulated by the local authority, the fraction (minute) of the time

was rounded, so the time showed only parking hours, but not minutes.

The rest of the data was collected during August, 2003 for 10 days. From

the observations, the steps of the parking network are determined as below: 1)

if a visitor decides to go to the Valley by car, the car enters the system from

either the Information Centre or the second parking area (Derwent Overlook),

2) if the parking area is full, the car moves to the next parking area, and so on,

and then 3) when the visitor decides to go home, the car goes home without

entering any other parking areas (Figure 7.1). Therefore, there are two input

Centre
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Bridge

58
Hurst

18

home

Trip

Trip
Go

home

No space

Go home

No space

Go home

No space

No space
or
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Figure 7.1: Markov queue network. The numbers in circles are parking
capacities.

points (i.e. Information Centre and Derwent Overlook) and four output points

(i.e. all four parking areas) in Figure 7.1. The state transition in the system at
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a macro level is represented as Figure 7.2. The arrival rate and the departure
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λ

µ

λ

2µ

λ

(N − 1)µ

λ

Nµ

Figure 7.2: State transition diagram of the system

rate of car per minute are symbolised as λ and µ, respectively in this study.

The number in the circle is the number of cars in the parking network system

and the N is the overall parking capacity, i.e. 134 + 77 + 58 + 18 = 287.

Arrival rate per minute was directly counted at the Information Centre

with 30-minute intervals (30λ) between 10:00 and 15:00. As explained above,

there were two input points in the parking network system and the arrival

rate of Derwent Overlook was not large from the direct observations. It was

therefore assumed it was the fraction of the arrival rate at the Information

Centre and there were some concerns about the reliability of true observation.

The simultaneous surveys on the arrival rate at the each parking area might be

considered for future research, but they were infeasible for the current research.

The data contains some mission values, so the total number of observed periods

was 84. The departure rate per minute was calculated as the inverse of parking

hour, which was collected by the parking beat surveys.

7.3.2 Arrival rate to the Upper Derwent Valley parking

areas

Differences in the distributions of arrival rates between holiday periods and

normal weekdays were examined (Figure 7.3 & 7.4). Non-parametric Wilcoxon

rank sum test showed that the distributions were significantly different with

99% confidence. The arrival rate during holidays has a trend with the time

of day. The arrival rate peaks around noon and gradually decreases afterward

(Figure 7.3). On the other hand, there is no obvious trend against the time
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of day on Figure 7.4. This research focuses on the parking network system

during holiday periods, so that only arrival rates during holidays are discussed

after this point.
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Figure 7.3: Boxplot and asso-
ciated means and standard devi-
ations of arrival rate during holi-
days
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Figure 7.4: Boxplot and asso-
ciated means and standard devi-
ations of arrival rate during non-
holidays

A commonly assumed distribution for counted data is the Poisson distri-

bution (Pfeiffer and Schum, 1973, p.200), and if this assumption is valid, the

Fano factor should be one, i.e. φ = σ2/m = 1 (Stevens and Zador, 1998, p.213).

The bootstrap simulation method (Hinkley, 1988; Chernick, 1999) was used to

estimate the Fano factors. Eight out of eleven bootstrapped φ for each ob-

served time of day have confidence intervals containing ‘1’ by the percentile

method5 (Table 7.1). Therefore, the evidence shows that the distributions of

arrival rates during holidays come from the Poisson distribution.

A triangular function fits with the time dependency of arrival rates, 30λt.

5Here the 100(1 - α)% confidence interval is simply given by the α/2 and 1 - α/2 quantiles
of T (X∗), which will be denoted by t∗α/2 and t∗1−α/2 respectively. That is, the 100(1 - α)%
percentile bootstrap CI is given by (t∗α/2, t

∗
1−α/2). The bootstrap provides estimates of

t∗α/2 and t∗1−α/2, i.e. the observed α/2 and 1 − α/2 quantiles of T (X∗) from the bootstrap
simulations.
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Table 7.1: Fano factor for the arrival rate during holidays

Time Boot. Std. Quartiles Contain
of day φ error (0.975) (0.025) ‘1’
10:00 3.17 2.05 7.72 0.01 Yes
10:30 4.80 2.03 6.85 0.00 Yes
11:00 3.93 2.35 9.00 0.48 Yes
11:30 15.45 7.46 29.35 1.73 No
12:00 14.25 8.50 30.68 0.00 Yes
12:30 14.72 11.13 33.88 0.21 Yes
13:00 13.47 7.07 27.13 1.09 No
13:30 5.40 3.16 11.16 0.09 Yes
14:00 8.50 6.12 18.94 0.06 Yes
14:30 0.36 0.16 0.59 0.00 No
15:00 8.63 6.47 18.75 0.00 Yes

The function for 30λt is:

30λhour =





α1 + β1 × hour 10:00 ≤ hour ≤ 12:30

α2 + β2 × hour otherwise

Where: hour is time of day and its interval is [10:00, 15:00]

(7.1)

Since the distribution is obviously heteroscedastic (Figure 7.3), the weighted

least squares method (i.e. dividing each observation by the variance of the

error term for that observation) is used to fit the linear models of the equation

(7.1). The estimation of all parameters in equation (7.1) is significant with

more than 99% of confidence (Table 7.2). The p-value for the model fitness is

also significant at the 99% confidence level and the model fitness of R2 is high,

i.e. 0.92 for 10:00 ≤ t ≤ 12:30 and 0.86 for 12:00 < t. In addition, the large

standard deviation around noon is explained by the property of the Poisson

distribution (Figure 7.3). The standard deviation of the Poisson distribution

is positively related with mean, so the larger the mean a distribution has, the

larger the standard deviation that distribution has.

From the results, we can reasonably assume that the distribution of arrival
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Table 7.2: Significance of triangular function of arrival rates, 30λt

α β Overall
t Est. p-val. Est. p-val. p-val. R2

10:00 ≤ t ≤ 12:30 -129.18 0.008 15.36 0.002 0.002 0.92
otherwise 225.95 0.003 -12.98 0.008 0.008 0.86
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Figure 7.5: Means of time dependent upon arrival rate and a triangular
function with the peak at 12:30

rates come from a time dependent Poisson distribution. Therefore, the equa-

tion (7.1) was used to produce the arrival rate in the Markov queue model of

the parking network system.

7.3.3 Departure rate from the Upper Derwent Valley

parking areas

The main objective of this section is to estimate the departure rate from the

Upper Derwent Valley, which is defined as the expected number of cars leaving

the Valley per hour. Moreover, departure rate is defined as the inverse of

parking hour, so that this section starts with the analysis of the parking hour

distribution.

The distributions of the parking hours between dates and parking areas

were checked to see if they were different. Overall, the distribution of the

parking hour is skewed to the right (Figure 7.7). The number after D means a
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sampled date and the number after S means a parking area from the Informa-

tion Centre, e.g. D23S1 means the parking hour at the Information Centre on

the 23rd of August 2001. The boxplots show the difference in the parking hour

among the categories more clearly. If the notches of two boxes are overlapped,

the expected parking hours are not significantly different between any two cat-

egories. Eight medians out of 12 categories are the same, i.e. vertical lines in

the middle of boxes overlap. The medians of the third and fourth parking ar-

eas on the 23rd are lower and those of the second and fourth parking areas on

the 26th are higher than the other median. These differences could be a true

difference. However, the differences are inconsistent within the same site and

date, so that only the overall parking hour distribution was used to estimate

the departure rate.
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Since the expected departure rate per hour (60µ) is the inverse of the

parking hours, it is 1/2.736 = 0.367 in this case. The bias from the non-linear

transformation was found very small (< 0.00001) from a bootstrap simulation,

so a correction for the parameter estimation is not necessary. Therefore, the

departure rate per hour from the Upper Derwent Valley was determined as
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0.367.

Moreover, in the Markov queue process, the service time (in this case,

parking hour) is distributed exponentially (Norris, 1997, p.182). The expo-

nential distribution with a rate of 0.367, is fairly close to the density function

of the parking hour (Figure 7.8). Therefore, the departure rate is also assumed

as Markov and consequently it comes from the Poisson distribution. In con-
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Figure 7.8: Exponential distribution of rate 0.367 and density of parking
hour

clusion, the departure rate was estimated as 0.367 cars per hour and it was

assumed as the Poisson distribution since the service time (parking hour) in

the system came from the exponential distribution.

7.4 Time dependent Markov Queue network

simulation model

The distributions of arrival and departure rates satisfied the requirements for

the Markov queue network model (Vose, 2000, p.235) and so the model is
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validated. Therefore, the Markov queue network model was developed to sim-

ulate the parking situation of the Upper Derwent Valley with RePast toolkit6

(Collier et al., 2003). The main purpose of this section is to verify the simula-

tion mechanism.

The simulation period of a day was bounded between 8:30 and 17:00 be-

cause the arrival rate was negative before and after the period. Also, the period

reflected the active hours of the real parking situation in the Upper Derwent

Valley. At the beginning of a simulated day (i.e. 8:30), 30 cars are assumed to

be in the Information Centre. From the results in the previous sections, the

arrival rate to the Information Centre is defined as:

λ∗hour =




−4.306 + 0.512× hour 10:00 ≤ hour ≤ 12:30

7.532 − 0.433× hour otherwise
(7.2)

The expected cars to the Valley is approximately 595 from an analytical solu-

tion7. In contrast, the observed car numbers are 842 and 769 on the 26th and

27th of August 2001, i.e. the expected car number in the Valley on the busiest

days is 805.5 from this data. If the model estimation is perfect, 210.5 cars do

not go to the Information Centre and this number is equivalent to the 35% cars

approaching the Information Centre. However, this model does not capture

some cars. For example, cars, which approach neither the Information Centre

nor Derwent Overlook, and cars, which arrive at the Upper Derwent Valley

after 17:00, are not captured in this model. Therefore, these cars, which were

equivalent to 5% of cars approaching the Information Centre, were excluded

from this model. Hence, this study assumes that the distribution of arrival

6http://repast.sourceforge.net/
7These are two solutions, 561.73 or 569.17, on the 26th and 27th of August. The full

calculation for the analytical solution of the car number is as follows. The large triangle is
539.0858 ∗ 2.092/2 or 539.0858 ∗ 2.1196/2. The small triangles outside of [8:30, 17:00] are
5.39064 ∗ 0.046/2 + 23.6952 ∗ 0.171/2. So, the expected cars are the large triangle minus the
small triangles plus pre-arrived cars of 30: 591.7338 or 599.1731. The average of the two is
595.4534.
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rates approaching Derwent Overlook is 30% of the ones approaching the In-

formation Centre. The arrival rate (λ) and departure rate (µ) per minute are

defined as follows:

λhour =





1.3(−4.306 + 0.512× hour) 10:00 ≤ hour ≤ 12:30

1.3( 7.532 − 0.433× hour) otherwise
(7.3)

µ = 0.0061 (7.4)

There is no reason to assume that a car, which comes to the Upper Derwent

Valley, must leave after other cars, which have come earlier, i.e. First In First

Out (FIFO). Therefore, the departure from the Valley in this simulation is

System In Random Order (SIRO). The simulation ran 500 time steps and the

algorithm for the Markov process was based on Ross (1997, pp.88-89).

The overall car number in the Valley was 774.818 and its confidence interval

[777.2413, 772.3947] captured the expected car number in the Valley, i.e. 595×
1.3 = 773.5. The number of cars in each parking area was similar to the

actual data except for the Hurst Clough parking area (Figure 7.9). Therefore,

the model is fairly verified. The reason for the different result in the Hurst

Clough parking area could have resulted from excluding non-parked cars, i.e.

on average, 21 cars could not find a parking space in the simulation model.

Cars are not assumed to return to a parking area, which they have searched

beforehand. However, in reality, cars may return to the Valley to find a parking

space after they searched through all four parking areas. Moreover, parking

area capacity in practice might be slightly higher than the proposed parking

capacity in this thesis due to double parking and illegal on-street parking,

which are actually observed during the survey period. This part could be the

weakest point in this model, and this problem can be solved in future research

with extra work.
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Figure 7.9: Number of cars parked in a day for 500 simulation runs. The
bar graph represents the mean, and its error bar represents the standard
deviation. The points are actual data from beats survey in August 2001.

Focusing on individual parking areas, the car numbers at the Information

Centre and Derwent Overlook keep rising until around noon (Figure 7.10).

Then, the car numbers at Bridge End Pasture and Hurst Clough shoot up

due to the saturation of the previous two parking areas. Following this, these

car numbers start declining after around 14:00. The mean peak time of this

parking network system is 14:02 with a standard deviation of 30 minutes,

although the peak arrival time is at 12:30. This is because of a buffer effect

between arrival and departure. From this result, the first two parking areas

are almost always saturated, approximately for two hours around 14:00 and

the whole network is often saturated for one hour around 14:00.

7.5 Searching time and walking time

From this section onwards, this chapter focuses on the second aim, i.e. finding

out the searching time and walking time of car drivers. An analytical approach

is first carried out to show the difficulty of this problem. Then, the simula-
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Figure 7.10: Car numbers in the four parking areas in the Upper Derwent
Valley. The bottom four plots are expressed by a rule as follows: brighter
(whiter) colour means more cars are present at a parking area at a given
time

141



tion approach is implemented to solve the problem. At the same time, the

mechanics of the Markov queue simulation model are explained in detail with

the concepts of event-driven and time-driven approaches.

7.5.1 Analytical consideration

If the parking areas in the Upper Derwent Valley are linear, cars are likely to

enter the first empty parking space they encounter. The minimum width of

a parking areas space is set to 2.4 metres in the Peak District National Park

(Peak District National Park Authority, 2001). Hence, the expected searching

time is:

Ts = 2.4x/Ss + (α1−2 ·D1−2 + α2−3 ·D2−3 + α3−4 ·D3−4)/Sd (7.5)

The x is the number of parking spaces a car passed before finding an empty

parking space. The Ss is the speed of a car in the parking area and the Sd is

the driving speed between parking areas. The α is distance from one parking

area to another parking area. The D is a corresponding dummy variables,

which is ‘1’ if a car passes the section, otherwise it is ‘0’. Thus, α1−2 applies

only when a car approaches the Information Centre first and cannot find an

empty space there.

The walking time function is similar to that of searching time:

Tw = (2.4x + α1−2 ·D1−2 + α2−3 ·D2−3 + α3−4 ·D3−4)/Sw (7.6)

The Sw is the walking speed. The only major difference between searching

time and walking time is that a car driver will go to the Information Centre

regardless of which parking area the car approaches first. This means α1−2

should be counted as a part of walking time even if cars approach from the
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Derwent Overlook. Also, walking speed is assumed not to change within and

between parking areas.

The equations (7.5) and (7.6) clearly show that the searching time and

walking time are dependent on congestion level and the number of cars in the

Valley. Moreover, the number of cars in the Valley is dependent on the time

of day. For example, the expected number of cars in the Valley at the time t

(minutes) in this simulation model is:

Nt = 30 +

t∫

8.5×60

λt−
t∫

8.5×60

µ(30 +

t∫

8.5×60

λt) (7.7)

This model uses SIRO8, so the distribution of the empty space x + 1 at t is

uniform between zero and Nt + 1. Therefore, the expected empty space at t is

(Nt + 1)/2 and consequently, the formula for expected xt at t is:

xt = (Nt + 1)/2− 1 (7.8)

Substituting equation (7.8) into equations (7.5) and (7.6) links the arrival and

departure rates with searching time and walking time.

The following sections simulate the model based on the explanation above.

One of the important facts skipped in this explanation is that there are two

types of cars coming to the Valley, i.e. one approaches from the Information

Centre and the other approaches from the Derwent Overlook. These two types

of cars exist in the same system at the same time and affect the other type

of cars. Thus, these two sub-systems should not be modelled separately. The

simulation approach easily shows the results of searching time and walking

time from two sub-systems, simultaneously.

Moreover, the result from the simulation can be deduced from the ana-

8See page 139.
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lytical solution; however, the deductive approach cannot catch up with the

simulation model if realistic concepts are introduced more into the simulation.

For example, more complicated driving behaviour, such as following / anti-

following previous car, will be coped with only by the simulation approach.

Therefore, this study uses the simulation approach rather than seeking an

optimal analytical approach.

7.5.2 Numeric solution from simulation

Besides the assumptions of the Markov queue model, there were six more

assumptions for this simulation model:

1. Driving speed between parking areas is constant and assumed to be, on

average, 20 miles or 32.187 KM per hour.

2. Driving speed while searching within parking areas and walking speed

are assumed to be, on average, 3.5 feet or 1.067 metres per second.

3. Cars do not search again in the same parking area and move to the

next parking area when they cannot find an empty space at the current

parking area.

4. Cars take the first encountered empty space.

5. The arrival point of cars is at the entrance of Derwent Lane (the inter-

section from the A57).

6. The distances between parking areas are 509.90, 1,231.01, and 2,362.38

metres or 557.63, 1,346.25 and 2,583.53 yards from the Information Cen-

tre to the Hurst Clough. These numbers are estimated from map refer-

ences9.

9From the Information Centre to the Hurst Clough, SK 173894, SK174889, SK 180885,
and SK188877
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As mentioned before, the total parking capacity of the four parking areas

is 287 and the width of a parking space is 2.4 metres. From these settings and

equations (7.5) and (7.6), the range of searching time10 is 0 and 18.41 minutes.

The range of walking time11 is 0 and 74.85 minutes.

Structure of combined event-driven and time-driven approach

This model is the combination of event-driven and time-driven approaches.

Although the concept of the Markov simulation model in Section 7.4 was not

described in detail, the concept was the same as that of the current model.

The arrival and departure rates are determined according to the time of day

as the Markov queue model in Section 7.4. A macroscopic timing determines

the arrival and departure of cars, so these events are time-driven events for the

system. Therefore, the arrival and departure are not controlled by each car in

this simulation. At the same time, each car acts according to the micro level

events they encounter between two macro level events. The micro level events

are to enter and exit parking areas, and these events change the driving speed

of cars, i.e. event-driven events for each car.

Time-driven simulation is suitable since arrival and departure are the key

events in the situation of the Upper Derwent Valley. Also, by giving the

authority of the timing events from each car to a macro system, the large com-

putational overhead is reduced since the time-line of major events are clearly

identified in this model (Cheng, 1998, p.235). This approach becomes more

beneficial in a successive study with an agent-based model of the Upper Der-

went Valley, in which the number of cars going to the Valley changes according

to the number of private car visitors at every time step. In this case, only the

arrival rate (λ) needs to change according to the change in car numbers.

10The max searching time is 2.4× 287/64.02 + (509.90 + 1, 231.01 + 2362.38)/536.45
11The max walking time is (2.4× 287 + 509.90 + 1, 231.01 + 2362.38)/64.02
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An event-driven approach is also suitable since the situation fits with the

Petri Net12, which is the key concept of the event-driven approach in trans-

portation (Febbraro and Sacco, 2004, p.1226). The objective of a car in this

model is to find a parking space. Events except for arrivals and departures

can be concurrent and asynchronous in terms of Petri net to achieve the ob-

jective (Peterson, 1981), i.e. the event-driven events are to enter and exit a

parking area. When each car enters a parking area, a car speeds down and

starts searching for an empty space to park. It is too dangerous to drive fast

in parking areas where there are many pedestrians as speed is strongly related

with safety issues. Also, when a car cannot find a parking space in a parking

area, the car exits the parking area and speeds up to get to the next parking

area.

Figure 7.5.2 shows the pseudo-code for the main loop of the macroscopic

timing in a simulation day (a representative day in a given week). First, state is

a local variable about the current total number of cars in the parking network

system. A variable with an under-bar-suffix is a field or global variable in the

Class. Each car is created with an arrival event and the car enters the first

array, which holds arrived cars (but not parked) at the Valley. There are two

other arrays of cars: the second array which holds parked cars in a parking

area and the third array which holds cars left in the Upper Derwent Valley.

The lines numbered between 2 and 4 initialise the timings, the arrays of cars,

and the state. Line 6 calculates the timing of the next event according to the

merge theorem, i.e. minimum of exponential λ and µ (Jain and Neal, 2000).

Within line 8, each car moves autonomously according to the event-driven

events between the current time and the time the next event occurs. The next

event-driven event is determined based on the relative proportion of λ and µ,

12Petri net is one of the discrete event system models. In this model, an event is in a
discrete state (e.g. ‘On’, ‘Off’) and each event occurs at anytime (asynchronousnes) without
the influence of other events (concurrency) (Peterson, 1981; Oota, 1995)
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and then occurs in line 9. Line 11 finally updates the current time of day. This

simulation runs until the end of a simulation day i.e. 17:00. This main loop

01 Start the Markov queue trip of cars
02 Initialise the current time and the next event time
03 Initialise the arrays of cars in the valley
04 Set initial state as the initial car number

05 while the current time is before the end time, repeat
06 Calculate the next event time based on state

07 if the next event time is before the end time
08 Move cars in the Valley and update state
09 Next event occurs and update state
10 End ‘if’ condition

11 Set the current time to the next event time
12 End ‘while’ loop

13 End the Markov queue trip of cars

Figure 7.11: Pseudo-code for Main loop of car movements.

shows that the model is time-driven at a macro view. However, between the

programming codes, each car searches for a parking space and drives according

to the events, so that the simulation is also event-driven.

7.6 Results and consideration

The simulation ran 500 times or 500 simulation days. Overall, both the search-

ing time and walking time are dependent on the time of day since the parking

areas are severely congested around early afternoon and so some cars have to

search longer and park far from the Information Centre, as expected in the

analytical solution in Section 7.5.1.

These times clearly depend on the parking location as well. The search-

ing time (Figure 7.12) and walking time (Figure 7.13) are presented against

arrival time of day. The distributions in these two figures have similar trends

and are consistent with the explanation in the previous sections. There is a
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clear difference between the distributions of searching time and walking time.

Searching time has two clusters in each parking area except for the Informa-

tion Centre, but this does not exist in walking time. As explained in Section

7.5.1, searching time is different between a car approaching the Information

Centre and a car approaching Derwent Overlook, and then, this produces two

clusters within a parking area. In contrast, the entrance points do not matter

for walking time since it is determined purely by the parking location.
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Figure 7.12: Searching time to find a parking space against the arrival
time of day

10 12 14 16

0
10

20
30

40

Time of day

w
al

ki
ng

  m
in

ut
e

Centre

10 12 14 16

0
10

20
30

40

Time of day

w
al

ki
ng

  m
in

ut
e

Overlook

10 12 14 16

0
10

20
30

40

Time of day

w
al

ki
ng

  m
in

ut
e

Bridge

10 12 14 16

0
10

20
30

40

Time of day

w
al

ki
ng

  m
in

ut
e

Hurst

Figure 7.13: Walking time to the Information Centre against the arrival
time of day

In addition, both searching time and walking time have either a trapezium

or triangular shape within each cluster. This means that both searching time

and walking time depend on the arrival time of day.
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Overall, the mean of searching time and walking time was 3.582 minutes

(σ = 0.235) and 10.675 minutes (σ = 0.638). Focusing on the relationship

between these times and parking locations, the searching times are not different

between the Information Centre and Derwent Overlook as long as a car driver

parks at the initial target parking area, i.e. 2.37 and 2.32 minutes in Table 7.3.

Table 7.3: Means and standard deviations of search and walking minutes
from 500 simulation runs. The name of the parking area in parentheses is
the initial target parking area.

Parkings Search (Centre) Search (Overlook) Walking
mean sd mean sd mean sd

Centre 2.37 0.09 2.33 0.07
Overlook 3.03 0.41 2.32 0.14 14.29 0.05
Bridge 8.25 0.46 2.77 0.47 28.14 0.05
Hurst 11.63 1.01 8.20 0.68 47.26 0.07

In fact, the ways in which searching time increases are similar regardless of

the initial parking areas. Therefore, the searching time are largely affected by

the arrival time to the Valley and the number of parking areas a car passed,

but not the initial target parking area and parked parking area. On the other

hand, the walking time is determined by the arrival time of day and parking

location. The expected walking time is 11 minutes shorter if a car can park

at the Information Centre. In addition, the walking time is much longer than

the searching time.

The standard deviations become larger as parked parking areas are at a

distance from the Information Centre because the numbers of cars in the third

and fourth parking area are not stable (Check Figure 7.10). On the other hand,

a standard deviation of the walking time does not change much (Table 7.3)

because the majority of the walking time is contributed by the walking time

between parking areas, which is irrelevant to the number of cars in parking
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areas.

7.7 Conclusion

This chapter successfully showed the dynamic model of the parking network in

the Upper Derwent Valley. Since this model used macroscopic timing from the

Markov queue model, this was a statistical time-driven simulation. However,

cars behaved according to their events independently, so this model was also

a disaggregated event-driven model.

This chapter described how to estimate the searching time of a parking

space and walking time with analytical and heuristical approaches. The results

of the simulation showed the trend of searching time and walking time with

the arrival time of day and parking locations.

Although the objectives of this chapter were achieved, some important is-

sues remained for future research. For example, car drivers tried to approach

from the Derwent Overlook even though they had to spend much more time

walking (Table 7.3). The reason why this model could not explain this phe-

nomenon was that this model did not consider the intelligence and the char-

acteristics of cars and visitors. The cars of the current model do not consider

optimising departure times or parking locations to avoid congestion. Such in-

telligence can be added to the current model with extra behavioural data from

another stated preference analysis. Thus, this problem should be considered

in future research. Also, this model treats cars as homogeneous particles and

so this model is microsimulation as explained on page 93. Chapter 6 showed

that different visitors have different parking preferences, which is determined

by age, frequency of visits, and the willingness to pay to the road user charg-

ing (Section 6.4). Therefore, in the next chapter, the characteristics of visitor

150



and (consequently13) their cars are integrated into this dynamic parking model

together with the discrete choice models by an agent-based simulation. The

simulation model in the next chapter allows researchers to analyse the more

complicated situation of the Upper Derwent Valley.

13If we could really interpret cars’ behaviours from car drivers’ behaviours, that would be
another question. But, this is not discussed in this thesis.
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Chapter 8

Agent-based modelling with the

Minority Game in the Upper

Derwent Valley

8.1 Introduction

All four sub-modules developed so far are combined by agent-based modelling

in this chapter. This chapter starts with the brief reviews on the difference

between the structure of conventional approach solely with discrete choice

models in Chapter 6 and the agent-based modelling in this chapter. Then, the

stochastic Minority Game, which was discussed and validated in the theoretical

part of this thesis, is rephrased in the context of the Upper Derwent Valley.

After simulation settings are confirmed, three types of results are discussed,

namely 1) results without seasonality, 2) results with seasonality, and 3) results

with elderly exemption, in terms of mode choices and congestion levels. The

last results further discuss equity and user utility while they are compared

with the results from the conventional approaches, which conduct analysis

solely with discrete choice models.
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8.2 Approach of this study

8.2.1 Structure of conventional approaches solely with

discrete choice models

Before explaining the current simulation model, the advantages and disad-

vantages in the conventional approaches, which conduct analysis solely with

discrete choice models in Chapter 6 are briefly examined. The two types of

equations on travel behaviour, i.e. mode choice and parking location choice,

are estimated in that study. The multinomial mixed logit choice model on trip

modes was based on travel information composing toll fee, bus fare, parking

fees, searching time for parking space, and walking speed. The other discrete

choice model on parking location was based on characteristics of visitors com-

posing age, travel frequency, and willingness to pay the road user charging

scheme. The two models clearly showed that the relationship between the

inputs and the outputs were expressed in probabilistic form.

The major advantage of these discrete choice models is that the equations

of probabilities simplify the problems of the real world (Parunak et al., 1998),

so the approach, which conduct analysis solely with discrete choice models, re-

quires relatively less detailed input data and decision making processes. Also,

the equations clearly represent the behaviour of the problems individually.

However, when the problems are interrelated to one another, these advantages

cause oversimplification. It is important to underline that the characteristics

of visitors were not directly modelled in the equation of mode choice. For ex-

ample, Section 6.4 described that visitors who used to park at the Information

Centre were likely to pay a parking fee and spend nominal time on searching

and walking. Therefore, such visitors were more likely to change travel mode

from Auto (‘car’) to Bus than other visitors, who arrived directly at the second
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parking area (Table 6.3). Hence, we can still link up the mode choice and the

characteristics of visitors, but it is difficult to think how mode choices affect

the decision making of the parking location. In other words, this approach

connects the two multinomial discrete choice models unidirectionally only by

the imagination of the researchers.

Moreover, in the case of a road user charging scheme, this D.Phil. research

is concerned about how the scheme reduces congestion in the area with other

relevant factors. From the conventional approach, there was no clear sign

about the effect of a road user charging scheme on the congestion level at the

parking areas. For example, a possible scenario about the effect of a toll fee on

congestion is that “if the probability of a visitor going by car is reduced by 10%

due to a toll fee, the congestion level at parking areas in the Valley would be

reduced by 10%”. However, this scenario is likely to overestimate the reduction

in the congestion since an unblocked parking area will attract other potential

car visitors. The problem came from the ignorance of a parking network and

the concept of congestion.

Any model about the parking network in the Valley was absent it is mod-

elled solely with discrete choice models. For example, a researcher solely using

the multinomial discrete choice model assumes that a visitor can definitely

park at the Information Centre if the visitor decides to park there. This is be-

cause these models cannot formulate the concept of congestion, which requires

dynamic links among the visitors – an example of “Oversimplification”.

In conclusion, although conventional approaches, which conduct analysis

solely with discrete choice models, clearly presented the probabilities of vis-

itors’ choices independently, it could be dangerous to infer congestion levels

at parking areas and visitors’ mode choices based on these equations since

this analysis depended on the only one ambiguous linkage and the process was

non-dynamic (Figure 8.1).
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Figure 8.1: Structure of a conventional approach which conducts analysis
solely with discrete choice models
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Figure 8.2: Structure of the agent-based simulation integrated with dis-
crete choice models
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The problems of conventional approaches which conduct analysis solely

with discrete choice models are overcome by using agent-based modelling. The

agent-based simulation model was developed in Java programming language

with RePast toolkit1 (Collier et al., 2003). Simultaneously, the advantages of

discrete choice analysis are integrated into the simulation model. The alter-

ation from the conventional approach into the stochastic agent-based simula-

tion with discrete choice analysis is discussed throughout this chapter.

8.2.2 Structure of agent-based modelling

Finally, the product of the four modules that have been explained so far comes

together (Figure 8.2). The two multinomial discrete choice models stayed as

main modules of the agents’ decision making at a micro level in this simula-

tion model. However, a learning process was added to the multinomial discrete

choice model with the strategies’ success scores in the Minority Game. In ad-

dition, this simulation model included the Markov queue model of the parking

network. The Markov queue model connected the two discrete choice models,

bidirectionally. The outputs of the Markov queue model were inter-linked with

the Minority Game through the interaction of various agents and the whole

process was carried forward to the next time step. Therefore, this model was

dynamic and had the concept of learning and congestion. To be consistent

with the approach solely with discrete choice models in Chapter 6, an agent

in the agent-based model was defined as a trip leader of a visitor group.

One more clear difference in the structures of the two types of analysis was

that the calculation in Figure 8.1 occurred once at a system level, so there

was only one set of calculations in discrete choice analysis. In contrast, in this

agent-based model, the whole set of calculations in Figure 8.2 was carried out

for each agent and at each time step, so that the system level results were

1http://repast.sourceforge.net/
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the integration of these many small calculations. This was a useful concept

since the user utility and behaviour of each individual agent were analysed by

tracking down individual calculations.

8.3 The Minority Game in the Upper Derwent

Valley

In this project, the Minority Game (Arthur, 1994; Challet and Zhang, 1997)

was used to assess the congestion level of the four parking areas. Currently,

there are only two mode choices in the Valley, ‘Auto’ (going to the Valley

by car) and ‘Cancel’ (not going), since there is no other practical alternative.

Then, after the road user charging scheme is implemented, one more choice

‘Bus’2 is added. Thus, there are three possible choices in the Upper Derwent

Valley after the implementation of the road user charging scheme. In general,

visitors should not come to the Valley by Auto when they cannot park at their

target parking area. Also, visitors arriving by bus will be glad that they chose

the Bus option if they find that there are no empty spaces in the parking areas

where the buses pass and stop. These two situations indicate that the visitors

are indirectly playing the Minority Game.

The Minority Game in the transportation sectors has been considered in the

theoretical models (Lee et al., 2001; Bazzan et al., 2000); however these models

have not been implemented in real world applications (Dia, 2002; Peeta et al.,

2005). Some agent-based traffic models have used the concepts of congestion

without being aware of the Minority Game (Klügl and Bazzan, 2004), although

these studies are similar to the Minority Game. Nonetheless, these studies tend

to be conceptual models. Therefore, this study contributes to fulfil the gap

2Parking a car before approaching a toll gate (Figure 5.1 on page 87), and going to the
Upper Derwent Valley by bus.
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between the theory and practice of the Minority Game in the transportation

sector.

Utilities and actual returns were not made up from a theory or some imag-

inary threshold, but calculated by the utility functions of a multinomial mixed

logit model, which were based on the survey at the Upper Derwent Valley

(Chapter 6). Unlike conventional Minority Games, the winners and losers

were not determined by a fixed proportion of agents in this model (e.g. 51%).

This was the same as the online Minority Game in Chapter 4, i.e. if the re-

turn from a choice was less than expected, this visitor made a wrong choice.

However, the winning side was determined more personally and either side was

not necessarily a global winning side. For example, if too many visitors choose

Auto, more people are likely to underestimate searching time to find a parking

space and walking time to the Information Centre since these factors are on

average longer in the congested condition. However, some of these visitors

are still able to park where they want to if they are lucky. Therefore, in the

same choice, there are both winners and losers in this Minority Game. Put

differently, agents in this model used personal experiences rather than cen-

tralised information (i.e. perfect information) to make their decisions, so that

the agents also had the personalised results of the Minority Game (de Cara et

al., 2000).

Furthermore, one thing that the conventional Minority Game has not con-

sidered about in the transport sector is ‘rigidity’ in the decision making process.

The rigidity or cognitive conservatism is observed in previous experiments and

surveys (Fujii and Kitamura, 2003). The rigidity could be due to characteris-

tics, which are specific to one travel mode such as comfort and convenience,

and this study takes into account the rigidity as alternative specific constants

in the multinomial discrete choice model (Fowkes, 2000; Ortúzar and Willum-

sen, 2001, pp.219–220). The coefficients in the mixed logit are not fixed, but
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oscillate with the normal distribution. Thus, the effect of travel times and

costs are different among agents due to the taste variations of visitors.

8.3.1 Strategies

Most discussion about strategies are deductively validated in the theoretical

part of this thesis, but some discussions are rephrased in the context. Although

the former sections use the phrase: ‘visitors make a choice’, properly speaking,

strategies make a choice instead of agents. Agents choose the best strategy

and follow the choice that the strategy made. The reason for this two step

decision making was due to imperfect information. It is impossible to obtain

perfect information to win in the Minority Game since you need to know the

decision making of many other agents. So, at least, the assumption of perfect

information fails in this situation. Therefore, even if the mechanism of the

decision making process was correct, the output may be wrong. It might be

said that this was just a problem of imperfect information; therefore, the model

does not need to be modified. Nonetheless, perfect information would never be

achieved, so the output was likely to be inefficient. Therefore, it was sensible to

give agents an ability to guess the results from the multinomial discrete choice

model. According to the Minority Game, the two thought patterns were easily

considered as explained on page 60 in Chapter 3. For example, if parking areas

are severely congested at the time of travel, searching time and walking time

tend to be longer for visitors with the Auto option. These visitors may think:

1) the parking area will be congested so I will not go to the Valley by car

next time, or 2) many visitors will be discouraged to go to the Valley by car so

parking areas will be empty; therefore, they think, I will go to the Valley by car

next time. Thus, searching time and walking time can have a negative affect as

well as a positive on the derived utility of Auto. From the description above,
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three thought patterns were considered for this simulation. The three thought

patterns of visitors depend on which mode takes the congestion related utility:

Thought pattern 1: believes that the parking area will be congested again

next time, so discourages a visitor from going to the Valley by car,

i.e. add βtime(Search & walk) into UA

Thought pattern 2: believes that the parking area will be less congested

next time, so discourages a visitor from going to the Valley by bus,

i.e. add βtime(Search & walk) into UB

Thought pattern 3: believes that the parking area will be less congested

next time, so discourages a visitor from cancelling the trip,

i.e. add βtime(Search & walk) into UC

Thought pattern 1 is the same as the result from the multinomial mixed

logit model mechanism. Thought pattern 2 and 3 try to cut the ground from

under the feet of other agents. In other words, thought patterns 2 and 3 are

the second thoughts from the result of the multinomial discrete choice models.

Put differently, these thought patterns are skeptical about the result of the

multinomial discrete choice like Hume’s evaluative skepticism3 (Clark, 1998).

Also, each thought pattern was sub-categorised into five strategies accord-

ing to the experience agents had since real human beings were unlikely to

remember more than several categories (Miller, 1956). Namely, agents could

use any of the last five experiences to calculate the choice. From the survey

carried out in the summer of 2003, it was unlikely that visitors remembered

any detailed trip information older than the last five trips. Then, up to five

strategies out of 15 strategies were distributed according to the memory dis-

tribution estimated in Chapter 4 (Table 4.1) at the beginning of a simulation

3See footnote on page 77

160



run. This meant that some agents decided on a travel mode based on the most

recent trip experience while other agents used the oldest trip experience.

Best strategy

The best strategy with the maximum success score was chosen before each

trip. This Minority Game used the horizon of strategy successfulness. The

horizon is related to the adaptability of agents, since a long horizon makes

agents consider too much historical information that may not be relevant to the

current situation (Liu et al., 2004, pp.347-351). The length of the horizon is a

parameter H, which represents the horizon for each strategy scores. Therefore,

the success score of each strategy is only a virtual point in the last H steps an

agent experienced:

θs
t =

t−1∑
i=t−1−H

R
xs

i
i /H (8.1)

where:

x = The selected choice by strategy s at i

Rx = Return from the selected choice at i

Rx is calculated from the utility functions from the mixed logit model on

page 119, so that its unit is utility. As shown in Equation (8.1), the success

score θ of any given strategy s at a time step t is the moving average of the

return from a selected choice by the strategy within the scope of horizon H.

The choice made by a strategy is not relevant with the choice used by an agent,

which possesses the strategy. All strategy-scores θ were calculated whether or

not the strategies were chosen by the agent. Similarly, although H was set

to five in this model, the length of horizon was irrelevant with the length of

experience remembered.
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Example of decision making process

This is an example of the decision making process. At a given week, each

strategy calculates the probability of each choice according to the multinomial

mixed logit model. Nevertheless, the thought patterns 2 and 3 swap the utility

of searching & walking time from UA according to their rules. Then, there are

five memories, so that a set of 15 possible strategies in an agent can be like

the one in Table 8.1. These 15 strategies are possible strategies, but in reality,

there are only a maximum of five strategies for each agent according to the

calibrated memory distribution in Table 4.4, i.e. some agents may have only

one strategy. For example, a subset of five strategies can be like the one in

Table 8.2.

Next, this agent needs to find the best strategy to make a mode choice. The

set of strategies in Table 8.3 is the same set of strategies as in Table 8.2, and

they have five horizon values. The choice in the table is the choice each strategy

made in each experienced time step. R is the return from the predicted choice

and actual parking condition in the Valley. Then, θ is the moving average

of the five returns. It is important to mention that the returns R are not

necessary to be the same among the strategies, even if the choice is the same

at any given horizon since the game is based on localised experience, but not

the centralised information4. Also R is expected to be negative according to

microeconomic theory, i.e. cost and travel time expectedly affect the utility of

visitors negatively (Hess et al., 2005).

In this example, thought pattern 2 with memory 1 has the highest success

score, so this is the current best strategy. However, this best strategy may

change in the future since it is a moving average. In the strategy of thought

4This is clear when Table 8.3 for this simulation and Table 4.7 for the web online Minority
Game (page 80) are compared. The simulation for the web online Minority Game uses the
centralised information so the returns R are the same if choices are the same.
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pattern 2 with memory 1, Auto has the probability of 0.6 (Table 8.2), so this

option is likely to be chosen by this agent, but this is still determined by the

probabilities. Although this decision making process involves guessing and

baffling other agents’ calculations, the basis is still the multinomial discrete

choice model. Thus, this process is not just throwing dice, but the result is

still connected with the situation of the Upper Derwent Valley.

8.4 Population

The structure of society and the expected number of cars on the busiest days

were estimated in the previous two chapters. The distributions of visitors in

terms of origin and visiting frequency were already shown in Figure 6.6, but

the table is displayed here once more (Table 8.4). The number of cars coming

to the Upper Derwent Valley on the busiest days was estimated as 805 from

observations5 and simulation6.

Table 8.4: Distribution table of origin and frequency of visit (percentage)

1/week 1/2 week 6-12/year 2-5/year 1/year < 1/year Overall
Far 0.99 3.96 7.92 49.50 17.82 19.80 39.92
Local 3.95 6.58 16.45 42.76 13.16 17.11 60.08
Total 2.77 5.53 13.04 45.45 15.02 18.18

From these results and a simple calculation7, the visitors’ population was

also estimated. The visiting frequency below ‘once a year’ was assumed 0.5

5See page 138.
6This includes the cars before simulation (Section 7.4).
7For example, assume 10 people visit the Valley at a given week. Of those, five people

visit weekly, three people visit monthly, and two people visit yearly. The five people really
come every week, so there are only five people of this type, i.e. 10 × 0.5 × 1 = 5. Another
three monthly visitors come the next week, and this continues until the next month, so this
means that four sets of three people of this type. So, there are 12 people of this type, 10 ×
0.3 × 4 = 12. Similarly, there are 52 sets of 2 yearly people who visit the Valley; therefore,
104 people of this type, 10 × 0.2 × 52 = 104. In conclusion, there are 121 people who visit
the Valley annually.
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per year. The number of annual week was set at 52. The estimated population

of the travel groups from the local area and neighbouring cities was 13,435.23,

and that for other areas was 10,410.91. Therefore, the overall population with

private car was 23,846.14 by calculation. The difference in population between

two regions does not differ as much as that of the overall distribution shown

in Table 8.4. This is because the visitors from the local area tend to go more

frequently, and this calculation does not double count these frequent visitors.

The problem is that this population is comprised of visitors by car and it

excludes other visitors who currently use a public bus and potential visitors

who cancel a trip on second thought. From the observations, the number of

bus users was nominal, but the number of the potential visitors was unknown.

There was no easy way to estimate the number of potential visitors since the

origin survey was largely unsuccessful as mentioned on page 87 (Chapter 5).

Therefore, this issue is left for future research.

As mentioned in Section 7.5.2 (from page 145), the number of cars to the

Upper Derwent Valley was determined by a time-dependent arrival rate λ, so

that alteration in the rate changed the car numbers in the Upper Derwent

Valley. For example, if the number of agents is 3,577 and potential visitors are

50% of car visitors, the ratio of agent size and visitor population is 0.1 (i.e.

3577/(23, 846.14 × 1.5) = 0.1). Then, on average, 121 agents are expected to

go8 to the Valley (805 × 1.5 × 0.1) per week in this scenario. The agent size,

which is expected to choose the Auto option, is 0.1 of 805, namely 80 or 81.

Then, if only 40 agents chose the Auto option, the arrival rate of cars and the

number of cars in the Valley before simulation is also reduced by half. This

means that Cancel applies only to the agents, which plan to go to the Valley

and decide not to go on second thought.

8Including the ones who decide to cancel the trip later
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8.4.1 Population as a collection of discrete individuals

One more issue about the population needs to be clarified. This study adapted

the techniques used in the multinomial discrete choice model, which produces

a result in probabilistic form instead of a discrete result. Traditionally, econo-

mists transform a probabilistic result as a proportion of a target population.

For example, if the result of Auto is 0.5, 50% of a target population, on aver-

age, choose Auto. This transformation of probability to proportion produces

the same output if input variables are the same. However, any population is

not a continuous variable, but the sum of discrete individuals in the agent-

based modelling. Therefore, each agent has to throw a die to decide a discrete

answer from a probability. This is the first reason why agent numbers fluctuate

before considering any other reason in the agent-based modelling. Addition-

ally, this transformation of probability to the proportion of a population may

cause biased results if interaction effects are significant as mentioned in the

introduction on page 23.

8.5 Simulation setting

This agent-based model used numerous parameters and was rich in local rules9,

so only important settings are explained here.. Unless specified otherwise, the

values in parameters were the same. The agent size or travel groups were 3,000.

The agent size did not affect the results of simulation, since this was a sample

from a larger agent population and car numbers were automatically reflected

by the ratio between the population and the agent size.

Real bus fare was 50 pence per person, the parking fee for the Bus option

was 50 pence per car, headway was 30 minutes, and the toll was £2 or £3.

9As explained on page 90, the total rules are over 300. Please see appendix B to see all
rules.
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Table 8.5: Range of believed values

Variable Range Explanation
Toll fee [0, 5] (£) Up to the R.U.C. in London.
Bus fare {0, 0.1, 0.2, 0.5, 1} (£) One-coin value from local

authority
Searching times [0, 18.41] (minute) See Section 7.5.2.
Walk distance [0, 4792.09] (metre) See Section 7.5.2.
Parking fee for Auto {0, 0.5, 1.5, 2.0, 2.5} (£) The real range in the Valley.
Parking fee for Bus {0, 0.1, 0.2, 0.5, 1} (£) One-coin value.
Headway {15, 30, 45, 60}(minute) From interview and current

situation

These costs come from interviews with the local authority (Derbyshire County

Council, 2003, per. com.). Agents did not know this travel related information

before they experienced it; therefore each agent picked up believed values ran-

domly from possible ranges at the beginning of each simulation. The range of

believed values are in Table 8.5. The first 520 time steps, which were 10 years

in simulation time, were treated as an initial transient period (i.e. the warm-up

period), so the outputs in the period were discarded from any analysis. The

one time step was for a representative weekend day. Most agents were expected

to go to the Upper Derwent Valley five times and fill all memory spaces by the

end of this period, so that they were most likely to gather enough real experi-

ences. The rest of the agents, which were a small part of infrequent visitors,

may have used believed values even after the initial transient period.

When agents could not park: When a car could not be parked at any

parking area in the Upper Derwent Valley, the associated agent was assumed

to give up its current visit. The agent may have enjoyed the rest of the day

somewhere else, but the maximum possible walking distance, 4792.09 metres,

was added into the agents’ experiences as a penalty, beside the searching time

the agent spent in the Valley.
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Walking speed: Walking speed was set, according to the agents’ age, be-

tween 4.2 and 3.0 feet per second, i.e. the older, the slower. The difference

in walking speeds between the older (the top three older categories) and the

younger (the bottom four youngest categories) is 0.7 feet per second. Previ-

ous research on walking speed is in urban areas and not in recreational areas

(TranSafety, Inc., 1997; Knoblauch et al., 1996), so these findings were used

only as a rough standard.

Frequency of visit: Visiting frequency is probabilistic; therefore, “visit once

every other week” did not guarantee that an agent visits the Upper Derwent

Valley this time if it does not visit the last time step. Instead, this concept says

that this agent is likely to visit the Valley, on average, 36 times a year. The

frequency of visit was based on the real data (Table 8.4) and it depended on

the travel origin. The mid point values were used for the categories ‘6-12/year’

and ‘2-5/year’, and also ‘< 1/year’ was set as 0.5.

8.6 Results: without seasonality

8.6.1 After the road user charging scheme becomes com-

mon knowledge

The results, after the road user charging scheme became common knowledge

without a seasonal traffic pattern, were examined. Simulation in this section

was steady state simulation. Policy tools such as a toll fee, bus fare, and

parking fees were exogenous variables and these values were fixed throughout

this study. The parking network model was based on the data on the busiest

days and controlled by macroscopic timing. Therefore, by discounting the

arrival rate λ, the model was able to control the level of travel demand. There

168



were three traffic demand levels (i.e. the busiest, 80% of the busiest, and 50%

of the busiest) and two levels of a toll fee (i.e. £2 and £3). It is important to

mention that the traffic demand levels control the arrival rate of cars, but not

the visiting frequencies of agents in this section10. As mentioned in Section 8.4,

the agents, which are shown in this model, are sampled agents in the Upper

Derwent Valley and the agent size is fixed to 3,000 in this model. Then, as the

traffic demand level is higher, more cars are running in the Valley; therefore,

there are more un-shown agents in the cars (i.e. agents in the population minus

sampled agents). That is, the proportion of sampled agents in the Valley is

lower with higher traffic demand levels. The bottom line is that the doubling

traffic demand level does not mean doubling the agent size. The traffic demand

levels can be purely considered as congestion levels in this section.

As expected, agents choose the Auto option more often as the parking areas

are less congested or the toll fee is cheaper (Figure 8.3). In contrast, the other

two alternatives are relatively less elastic with the changes in the two factors.

The lines in bold were smoothed by LOWESS method with value 0.1

(Cleveland, 1981), and raw data are shown in grey lines. The grey lines show

that the mode choices are varied throughout any simulation and never get an

equilibrium point although the system seems to achieve a steady state at a

larger viewpoint. The variances are due to the probabilistic travel frequency

and the discrete population as explained on page 166. More interestingly,

the variance is due to the nature of the Minority Game. Each agent tries to

forecast the most optimal choice at each time step with different travel expe-

riences, but there is no such optimal choice in this Minority Game situation.

The optimal decision making in the Minority Game situation is dependent on

the other agents’ decision making, which cannot be predicted perfectly since

10The traffic demand levels as seasonal demands that affect the visiting frequencies of
agents in Section 8.7 and the mechanism is explained on page 172.
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Figure 8.3: Mode choice after the road user charging becomes common
knowledge. The traffic condition is 100%, 80%, and 50% busiest from left
to right. And, the toll fee is £2 on the top figures and £3 on the bottom.

their decisions are also dependent on other agents and so on (Unger, 1978).

This is an important issue so that the cause of variation by the Minority Game

is discussed further in successive sections.

Although the decisions were based on different experiences on the different

time steps, the experiences did not radically change at a system level when

exogenous variables were fixed. Hence, the mode choices were varied within a

limited boundary, and consequently, the system reached some degrees of steady

state.

8.6.2 Transition period of the road user charging

In this section, the road user charging and bus service were implemented in

the middle of the simulation, so that an exogenous variable, toll fee, was not

constant. The road user charging and bus service were implemented at the
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53rd week (i.e. the first week of the second year). The number of Auto and

Cancel reduced while the number of Bus increased after the implementation

(Figure 8.4).
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Figure 8.4: Mode choice during implementation of the road user charging.
The traffic condition is 100%, 80%, and 50% busiest from left to right. And,
the toll fee is £2 on the top figures and £3 on the bottom.

The change started rapidly soon after the implementation of the road user

charging and the bus service. However, it took more than one year to become

a new steady state, and the slight transition process continued for another

year at least. At the end of the first road user charging year, 18.18% of agents

were expected not to know the change (Table 8.4), so that the transition took

sometime. Moreover, the transition period is likely to be longer as more agents

choose Cancel, i.e. there are always a positive number of agents cancelling the

trip on second thought every time they plan to go to the Upper Derwent Valley

on the initial thought.
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8.7 Results: with seasonality

8.7.1 Traffic pattern

From the traffic flow data of 2003 on the A57 explained in Section 5.2, the

seasonal demands on the Valley were estimated. The final week of August and

the first week of September were set as the busiest weeks (the vertical dotted

lines in Figure 8.5). June to September were set as 90% of the busiest weeks,

i.e. high season (the darkest background colour in Figure 8.5), April, May, and

October were set as 80% of the busiest weeks, i.e. intermediate season (the

intermediate background colour), and the rest of the periods were set as 60%

of the busiest weeks, i.e. low season (the white background colour). Unlike

the last section, the seasonality affected the frequency of agents’ visits if their

visiting frequency was less than ‘once every other week’. For example, an

agent, which is supposed to come once a year, still comes once a year, but it is

more likely to come during high season than low season. The toll fee was fixed

at £3, which was the highest possible value according to the local authority,

from this section onward.

PreRUC.season.toll3.

weeks

ag
en

t n
o.

0 50 100 150

0
10

0
20

0
30

0

PostRUC.season.toll3.

weeks

ag
en

t n
o.

0 50 100 150

0
10

0
20

0
30

0

Auto
Bus
Cancel

Figure 8.5: The left figure shows mode choices before the road user charg-
ing, and the right figure shows mode choices after the road user charging.
The toll fee is set to £3. The background colours show the traffic seasonality
in the Valley.

As expected from the previous results, the demand for Auto is reduced after

implementing the road user charging as the demand shift to Bus and Cancel,
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and the shift is greater in the high seasons since the trend of Auto is relatively

more flattened after the implementation. This is attributable to the fact that

the preference of agents (or strategies strictly) was logarithmic and not linear

with given parameters. This means that an extra 10 cars in the parking areas in

an extremely congested situation discourages agents from choosing Auto more

than the same extra 10 cars in a less congested situation. This phenomenon

was consistent even from localised viewpoints. Figure 8.6 shows the proportion

of time each parking area is congested. Generally, congestion levels are reduced

after the road user charging scheme is implemented. However, the proportions

of medium congested periods increase after the implementation, i.e. the black

coloured areas (100% full) shrink while the red (medium) coloured areas (75%

full) stretch in Figure 8.6.
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Figure 8.6: Congestion levels in four parking areas (Information Centre,
Derwent Overlook, Bridge End Pasture, and Hurst Clough from left to right)
with seasonality. The top graphs show congestion levels before the road user
charging, and the bottom graphs show after the road user charging. The
toll fee is set to £3.

Therefore, the model in this section showed that the road user charging

scheme reduced the demand of Auto effectively in more realistic conditions

and the reduction in the demand was corresponding with the reduction in the
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congestion level in the parking areas. Since the scheme reduces demand and

congestion more efficiently at extreme conditions, it solves the severe conges-

tion problem at parking areas while still attracting visitors in less congested

conditions.

8.7.2 Timing of implementation

The time the policy scheme becomes common knowledge is different with im-

plementation schedules. The three graphs in Figure 8.7 show the mode choices

with different implementation timings. When the road user charging scheme is

implemented at an intermediate season, the scheme becomes common knowl-

edge by the end of this high season and so the majority of the process finishes

within the first six months (left graph in Figure 8.7). In contrast, the process

is slower when the implementation is in the middle of a high season or the end

of an intermediate season (middle and right graphs in Figure 8.7, respectively).
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Figure 8.7: The road user charging scheme is implemented at the begin-
ning of a intermediate season, the middle of a high season, and the end of
a intermediate season, respectively from left to right. The toll fee is set to
£3.

In the second case, the prevailing process was kick-started rapidly, but

this fast process stopped before reaching an adequate level. In addition, the

process was even more sluggish, in comparison with the other two cases, when

the implementation was at the end of the intermediate season. In both cases,
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the process continues in the next high season and so it takes longer than

six months. Therefore, the implementation timing at the beginning of an

intermediate season is, time-wise, most efficient.

8.8 Results: with elderly exemption

This section focuses more on the elderly visitors and the toll fee was fixed at

£3. From observations, a large proportion of visitors to the Valley are elderly

visitors. The result from the questionnaire showed 24% of visitors were aged

between 55 and 64 and 12% of visitors were aged over 65, so overall more than

a third of visitors were elderly visitors. Many visitors to the Valley carry large

equipment to have a picnic and it will be difficult for elderly visitors to carry

this equipment without car. Although this model possibly takes this difficulty

into account, within an existing factor ‘walking speed’, this internalisation is

likely to be underestimated so that special care should be considered for this

fact. There are five to six disability parking spaces in front of the Information

Centre, which is the primary destination for the many visitors, but this space

should be used by true disabilities, strictly speaking. Also, this space is insuf-

ficient during the high season and will never satisfy most elderly visitors even

if the space is doubled.

One possible solution is to give the elderly a discount on the toll fee. Elderly

visitors, who are eligible to receive the exemption, were defined by age, from 55

or 65, in this section. When the discount was only £1 off, overall demand for

Auto was not increased significantly for both cases (Middle graphs in Figure

8.8). In contrast, when all visitors older than 55 received a full discount on

the toll fee, the trend of Auto vertically rose and that of Bus fell (Top right

graph in Figure 8.8). With 100 sets of this situation11, the percentage rose in

11Each set has exactly the same setting including the seed of random number generator
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overall Auto demand by 12.71% with a standard deviation of 1.07%. This case

is rather remarkable, so this study concentrates on this case and looks into the

inside of its result for the rest of this chapter.
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Figure 8.8: Mode choices with elderly exemption. Elderly visitors are
charged discounted toll fee between £0 and £3 off, from left to right graphs.
The visitor eligible to receive the discount is older than age from 55 on the
top figures and 65 on the bottom figures. The toll fee is £3

8.8.1 Comparison with conventional econometric analy-

sis solely using discrete choice models

When a researcher conducts the same analysis solely with the multinomial

discrete choice model, the result could be similar but the contents of the re-

sult have to be examined carefully. The multinomial discrete choice model in

Chapter 6 cannot figure out searching time, walking time, and a parking fee

for Auto, so this approaches, which conduct analysis solely with discrete choice

models, is not even on an equal footing with the agent-based simulation model.

except for the level of elderly exemption.
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Leaving this question aside, assuming that these values are the central point

of possible values and the other parameters are the same as those of the cur-

rent agent simulation, the overall percentage increase in Auto by the discrete

choice model is 15.09%. Thus, both approaches produce similar outputs, but

the difference is obvious when the break downs by age categories are examined.
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Figure 8.9: Proportional change in Auto by age categories with elderly
exemption from the age 55. The left graph is result from agent-based mod-
elling. The right graph is from the analysis solely with discrete choice mod-
els.

Auto demand rises only in the two elderly age categories and those in the

other age categories stay the same in the conventional approach solely with

discrete choice models (Right graph in Figure 8.9). In contrast, the demand

of Auto is higher for the two elderly age categories in the agent-based analysis

(Left graph). At the same time, the demand declines for younger age categories

due to the side effect of the congestion in parking areas. As more elderly

visitors come to the Valley by car, the parking areas are more congested,

and consequently this situation discourages other visitors from coming to the

Valley by car. Moreover, this discouragement reduces the parking congestion

more than expected, so that this possibly encourages other visitors, namely

the elderly visitors, to come to the Valley by car, simultaneously. Hence, the

proportional rises of elderly visitors are more prominent and the demand for

Auto by some agents is reduced in an agent-based analysis. There are also
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variations in the trend of Auto number in agent-based model. This is an

important issue and discussed in the next section.

In the meantime, as shown in the Figure 8.1, the conventional approach

solely with discrete choice models does not have the direct feedback mechanism

with parking congestion or in other words, there is no concept of congestion in

the analysis. Therefore, the type of visitors, who come by car due to less con-

gested parking areas after the implementation, is ignored in the conventional

approach solely with discrete choice models (Stopher, 2004). The conventional

approach underestimates the Auto demand by elderly visitors and overesti-

mates Auto demand by younger visitors because the analysis underrates the

sub effect from parking congestion.

8.9 Variation in the model and unpredictabil-

ity in the Minority Game

This section starts with the unanswered issues in the previous section. The

change in the Auto number was varied in the agent-based model. Especially,

error bars are spread widely in the age category younger than 18 in Figure 8.9.

This is the evidence of the variation amongst agents’ decision making. As

mentioned in the earlier section of this chapter, each agent behaves individually,

so that it is not necessary that two agents make exactly the same result when

inputs and characteristics are exactly the same. A macro level result as the

sum of individual decisions could be the same as the result of a system level

analysis when individual numbers are large. However, since the macro level

result from an agent-based model is a collected result, deviations exist in the

result and the stability of the result is strongly affected when the sample size

is small. The proportion of age category below 18 is only 0.6% or only 18 or 19
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out of 3,000 agents, and the variances are very large in this model. With the

small agent size and wide variation, the result from the youngest age category

is very sensitive.

It should be emphasised again that, the reason for the wide variation is

partly due to the frequency of visits, but more importantly, it is partly because

of unpredictability in the Minority Game. It is impossible to achieve perfect

rationality in the Minority Game since this kind of rationality requires that

an agent is aware of decisions from many other agents. Due to the cognitive

limitations of individuals, this type of information is usually inaccessible in

real life (Klügl and Bazzan, 2004), especially in the case of parking congestion

(Thompson and Richardson, 1998, p.162). The current study uses thought

patterns and strategies to formulate agents’ decision making, and similarly, no

strategy can be a globally best strategy in this dynamic situation. When many

agents find the same best strategy, the strategy is no longer the best strategy

since these agents move in the same direction and this direction is no longer

the minority side.

In the end, these agents are making a decision, but at the same time, partly

throwing a die to select a choice at every time step. This causes a wide variety

in the decision making process of agents. For example, Section 8.8 shows that

the Auto demand by elderly visitors increases when the exemption is given to

them, but the change is not uniform even within the same age category.

Figure 8.10 is the cumulative number of Auto chosen by each elderly agent

aged over 65 in the same visiting frequency between 2 and 5 times a year.

These graphs show a cumulative sum with time, so a horizontal line at the

bottom means the agent never chooses Auto. The lines are widely spread in

both graphs, although these agents are in the same age and frequency category.

The number of times Auto was chosen is distributed at a lower level without

a toll exemption. In contrast, more lines are distributed at a higher level with
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Figure 8.10: Cumulative numbers of Auto chosen by each elderly agents
age over 65 without and with full elderly exemption from over the age of
55, respectively from the left to the right at the graphs.

the exemption of £3. These movements indicate that many elderly agents,

who cannot afford to visit the Upper Derwent Valley by car, are supported by

the exemption. However, some other elderly agents still prefer other choices

such as Bus or Cancel. This is partially because extremely bad experiences

discourage the agents from choosing Auto, but on the other hand, this could

be because an internal preference assigned with other characteristics chooses

alternatives. Therefore, analysis on the agent user utility is necessary to justify

the comfort of elderly visitors.

8.10 Distribution of user utility amongst agents

User utilities were calculated from the utility functions of the mixed logit model

(i.e. equations (6.3), (6.4), and (6.5) on page 119) in Figure 8.11; therefore,

their units are utility. Therefore, these values are meaningful only in compari-

son, but not in absolute terms. In other words, the negative trends of the user

utility do not mean that the agents in this category are worse off, but only

that the relative difference between two plots has some explanations. The plots

show the improvement of the agents’ user utility after the implementation of

elderly exemption in the same age and frequency category (Figure 8.10). With-
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out the exemption, the user utility was ranged between -59.01 and 4.68 with

the mean of -25.45. With the full exemption, the user utility ranged between

-47.87 and 32.870 with the mean of 9.202. There is still equity problems within

the same agent category since some agents keep increasing their user utility

while some other agents are struggled to raise their user utility. This is the

nature of the Minority Game, and could be the real phenomenon in many real

competitive societies.
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Figure 8.11: Cumulative user utility of each elderly agent aged over 65
without and with full elderly exemption from over the age of 55, respectively
from the left to the right at the graphs.

Lastly, the cumulative utility is examined in the case of elderly exemption

for those aged over 55. As discussed before, the variances of user utility are

very large at the end of the simulation, also the user utility of agents are

improved as the exemption rises in the top two elderly age categories (Figure

8.12). These are the expected phenomenon and the trend is similar to the

bar graph about the relationship between the number of Auto uses and the

exemption (left graph in Figure 8.9) except one important issue.

In the bar graph of the Auto number, the number chosen by the younger

agents decreases as the exemption increases due to the congestion in the park-

ing areas caused by the increase in elderly drivers. In contrast, the user utility

of younger agents does not decrease much if not decreasing at all. The reason

simply comes from the adaptation of agents. As parking areas are congested,
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Figure 8.12: Boxplots of agent user utility at the end of simulation in
the situations of elderly exemption from age over 55. The level of discount
is none, £1, and £3 off. All agents have the visiting frequency category
between 2 and 5 per year.

it is more likely that you get a bad experience and so younger agents learn that

there is not much point to go by car in this situation. Then, younger agents

stop using Auto and switch mode to Bus or even Cancel, but older agents still

try to go to the Valley by car since the bad experience of the congestion is sub-

stituted by the exemption. For younger agents, alternatives are better options

even though their initial motivation is Auto since the alternatives are less con-

gested and they may feel more conformable with the choices. Because of this

adaptation, the user utility of younger agents does not decrease much. There-

fore, the exemption on the elderly visitors is a possible and suitable scheme to

reduce the difficulty specific to the elderly visitors.

Nonetheless, the budget for the exemption comes from outside of this model

and so this model cannot formulate whether or not the exemption is affordable.

In addition, the overall Auto demand increases with the exemption in some

cases. This means that the exemption partially ruins the chance to reduce the

congestion level in the parking areas, which is one of the main purposes to

implement the road user charging scheme. Therefore, this fact should also be

considered when the exemption is implemented. Moreover, this study uses the

exemption on elderly visitors, but the idea could be applicable to other social
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groups as well.

8.11 Conclusion

This simulation model produced comprehensive outputs including mode choices,

congestion levels, and the user utility of visitors simultaneously. The study fo-

cuses more on concept and process. Having said that, the results showed that

the road user charging scheme would reduce the Auto demand in the Upper

Derwent Valley and proved that the reduction eased a concern about the con-

gestion at the parking areas. The reduction in Auto demand and parking

congestion was effective especially when overcrowding occurred, for example

during the August Bank Holiday. Also, this study suggested that the scheme

should be implemented sometime before the high season to make the scheme

become common knowledge quickly. Although further study should be con-

ducted to finalise the possibility of exemption to the elderly visitors, the model

showed that the exemption improves the comfort of elderly visitors without

sacrificing those of younger visitors significantly.

Looking back at the concept of the model, this model showed that the over-

simplification in the conventional approach solely with discrete choice models

gave significant biases when real world problems were analysed. In the case

of the Upper Derwent Valley, the oversimplification was the ignorance of the

parking network and consequently the concept of congestion, which required

dynamic modelling of the linkages amongst visitors. Agent-based models had

the advantages of the dynamic modelling and connecting between components

in the model. Therefore, the agent-based model simulated the situation of

the Upper Derwent Valley more realistically. Although the output from the

model was still far from the real world situation due to the lack of some input

data, the process of simulation demonstrated enough evidence to alert that
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the output of the conventional approach solely using discrete choice models

underestimated the sub-effect of the parking congestion in the Upper Derwent

Valley. In conclusion, the practical part of this thesis established an agent-

based model to examine the advantages of the two different models and to

overcome the disadvantage of the conventional approach solely with discrete

choice models.
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Part IV

Conclusion
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Chapter 9

Overall discussion and thoughts

on future research

9.1 Introduction

This is the final chapter of this thesis and concludes overall discussion in the

previous chapters. The section of theoretical discussion answers the questions

raised in the first chapter instead of summarising the theoretical arguments.

The section of practical discussion recommends the implications from results

in this thesis to potential policy makers. Then, these discussions are followed

by thoughts about future research and some closing comments.

9.2 Theory: Looking back at the questions

raised in the introduction

The key underlying question throughout this thesis was stated on page 11 in

the first chapter.

“How do the results of conventional analysis, which solely
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use discrete choice models, change when dynamic inter-

action and learning is integrated by agent-based mod-

elling?”.

This thesis integrated the discrete choice analysis with agent-base modelling.

The efficiency of discrete choice analysis and stochastic approach was confirmed

in this thesis in terms of computational power, simulation time, data collection,

etc.. Therefore, the real question was how the integrated approach differed

from the conventional approach solely with discrete choice models aside from

the efficiency issues. This question is discussed by answering two sub-questions

raised in the first chapter.

In the first chapter, one major assumption in economic models was stated

on page 6:

“the summation of local optima equals a general optimum”.

Also, this was more precisely explained with a mathematical formula on page

23;

nx =
∑
N

P x

Detailed explanation is shown on the page mentioned above. In brief, this

formula assumes that the summed probability of a mode x is the same as the

proportion of tourists who choose a mode x in a given population N . Also, this

formula does not take into account the interaction effects between travellers.

In other words, the outcomes from the mixed logit presented in Chapter 6

can be the same as those of agent-based modelling in Chapter 8 if and only

if the interaction effects between visitors are insignificant. Chapter 8 after

Section 8.8.1 answered this question. As Figure 8.9 on page 177 showed, the

proportions of visitors, who chose Auto, were not the same with (i.e. discrete

choice model plus agent-based model) and without (i.e. solely by discrete choice

model) the interaction and learning effects from the congestion at the parking
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areas. Therefore, this result disagreed with the formula and the assumption of

“the summation of local optima equals a general optimum”.

Moreover, the comparative results in Chapter 8 also indirectly answer the

hypothetical question on page 16:

H0: Model output| max{U : e
Ac−→, imperfect information} → R =

Model output| max{U : r, perfect information} → R

H1: Model output| max{U : e
Ac−→, imperfect information} → R 6=

Model output| max{U : r, perfect information} → R

In brief, this hypothetical question tests if a model based on an iterative process

with imperfect information and another model based on a single calculation

with perfect information produce the same output. As discussed in Section

1.2.2, perfect information includes the communication among agents and the

communication between agents and the environment. Moreover, these commu-

nications as the pieces of information are usually ignored in traditional analy-

sis and the information is assumed freely available to agents in the modelling.

However, such information is not free in reality. Free and perfect informa-

tion also means the ignorance of learning since if every agent has the perfect

information there is nothing more to learn.

Moreover, the communication itself does not exist if there is no mechanism

of interactions. For example, the restriction in the communication between

agents and the environments causes shortsightedness in agents so that visitors

in the agent-based simulation model in Chapter 8 use localised experience

rather than the centralised perfect information. So, the utilities are calculated

step by step, i.e. iterative process of U : e
Ac−→ in the simulation. In contrast,

the conventional analysis solely based on discrete choice models in Chapter 6

does not have the concepts of interaction, communication, and learning so that
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the model was bounded to take one form of centralised information to analyse.

So, the utilities are calculated in one run (step), i.e. U : r.

It is not discussed in this thesis if the centralised information is the perfect

information. Leaving this question aside, Chapter 8 after Section 8.8.1 showed

that the results based on localised or imperfect information were different from

the results based on the non-localised information. In the case of the Upper

Derwent Valley, the dynamic condition of imperfect information was inevitably

associated with the Minority Game of the parking congestion. Therefore, the

ignorance of this situation in conventional approaches which conduct analysis

solely with discrete choice models also inevitably generated the biased results.

Hence, this thesis rejects the null hypothesis of equal outputs with static perfect

information and with dynamic imperfect information. The discrete choice

analysis was less biased when dynamic interaction was integrated by agent-

based modelling.

In conclusion, the theoretical achievements of this thesis conclude with the

statement of a key problem and proposed solution mentioned on page 2.

The statement of a key problem in this thesis is:

“Conventional approaches which conduct analysis solely

with discrete choice models have the advantage of sim-

plicity, but severe biases exist due to the neglect of some

interaction and learning effects, which might be seen as

oversimplification”

The proposed solution to the problem in this thesis is:

“Innovative interaction and learning are added to the

conventional approaches by agent-based modelling together

with discrete choice analysis”
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The statement of a key problem was observed and confirmed. Then, the pro-

posed solution was achieved to improve the conventional approach with solely

discrete choice models in this thesis. Interdisciplinary approaches into eco-

nomic theories have become important to reflect reality (Clark and Wrigley,

1995), and this thesis confirmed the importance in current and future research.

9.3 Practice: Suggestion to policy makers

This section gives some recommendations from the results of practical analysis

to potential policy makers. Generally, the road user charging and park & ride

schemes cut the demands of private cars coming to the Upper Derwent Valley

from the results of discrete choice analysis in Chapter 6 and the agent-based

simulation model in Chapter 8. Consequently, the congestion levels in parking

areas will be reduced according to the results of Chapters 7 and 8.

There are some concerns about equity from the road user charging scheme.

An equity problem is always observed when policy makers try to implement

policies. For example, Eckton (2003) is not supportive of the road user charging

scheme in the Lake District National Park due to the horizontal and vertical

equity problems1. This could be the same for the road user charging scheme

in the Upper Derwent Valley since the effects of the road user charging were

unequal between different visitors in the current research. However, the unique

attribute of the road user charging scheme in the Upper Derwent Valley is that

the road is a dead-end and only a few people live in the charging zone, so the

other people visit the Valley only for leisure. Therefore, equity issues raised in

this thesis may not be as critical as the ones in the other road user charging

research.

1This could be defined as the right to mobility, and provision of identical conditions for
citizens living in all parts of a certain country (Territorial equity) and associated with the
protection of those in worst conditions, respectively (Viegas, 2001, p.291).
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Having said that, from observation, the elderly visitors suffered most from

the schemes since they carry large equipment, which is difficult to carry by

public transport. Also, Section 6.3 revealed that a large proportion of visi-

tors are comprised of the elderly people. The possible remedy for the elderly

visitors is to give a discount on the toll fee. Section 8.8.1 showed that the

elderly exemption encouraged elderly visitors to come to the Valley by cars,

while Section 8.10 showed that the user utilities of younger visitors were not

sacrificed significantly. Therefore, the elderly exemption is a recommended

complementary policy tool alongside the park & ride scheme. Further research

is needed to figure out how to finance the elderly exemption in this situation.

Therefore, the level of the elderly exemption is not mentioned here.

Overall, the road user charging and park & ride schemes are recommended

in the Upper Derwent Valley. Nonetheless, serious congestion was observed

only around the Upper Derwent Information Centre, and road congestion was

not observed on the A57 and Derwent Lane even during the August bank

holiday weekend, which is the busiest time in the Valley. Therefore, policy

makers have to think carefully about the severity of congestion in this area

before they put into effect the schemes.

The new schemes were found effective to control the traffic in the Upper

Derwent Valley. At this stage, the society is likely to obtain utility from the

road user charging scheme if the congestion becomes a severe problem. The

level of toll fee is effective at any level between £1 and £3 as planned by the

local authorities, but £3 is the most effective. This research did not clarify

the accounting of these schemes, so that I avoid stipulating the recommended

level of toll fare. This will be the next research question.
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9.4 Thoughts about future research

Some research questions are left and emerged from this thesis. First, the

analysis on the Upper Derwent Valley was only with the destination data

since the origin data was unsuccessfully collected in this thesis as mentioned

in Section 5.2. The origin data was infeasible to collect in a D.Phil. research

project, but it can be feasible to collect in a larger continuous project.

Second, it is still possible to improve the decision making mechanism of

agents. For example, the utility functions of agents were assumed not to change

throughout the simulation period. The assumption may not affect the results

significantly since the simulation period is equivalent to three years in the real

world. However We may have to wait for a while before we can use these new

concepts at a practical level.

Third, this analysis focused only on the demand side of tourism at the

Upper Derwent Valley and the analysis on the supply side was not included

in this thesis. Therefore, toll fee, the frequency on bus schedule, bus fare, and

parking fee had to be modelled as exogenous factors. In addition, the costs

of these services are not known in this thesis. Consequently, this thesis could

not suggest the level of the elderly exemption and the toll fee. Personally, it

is interesting to see how the interaction between the demand and supply sides

changes the results of this thesis. Moreover, if the supply side is integrated

into the agent-based modelling, the producer surplus, which is the utility from

the road user charging, the park & ride service, and the parking services, as

well as the consumer surplus, which is the user utilities shown in Section 8.10,

is calculated. Therefore, the improvement in the overall social welfare after

the implementation of the schemes can be calculated.

Furthermore, if the supply side is integrated, we can compare the road user

charging scheme with other policy options such as the expansion of parking
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areas. This comparison will be important to justify the usage of the road user

charging scheme. Also, analysing the expansion of parking areas will intro-

duce some interesting research since this policy option is likely to generate an

induced travel demand2, which impacts on the environment more significantly

than the road user charging scheme (Fulton et al., 2000). The environmental

cost is the factor the current model could not formulate in this thesis and it

would be a key factor in calculating the overall social welfare more realistically.

Of course, finding out the supply side mechanism requires extra data from

companies and governments. Unlike the behavioural data of visitors, such

supply side data are usually more confidential, so that modelling the supply

side behaviour may require more workload than this thesis. Nonetheless, it is

worth thinking about, including the supply side into this agent-based simula-

tion model in the future.

9.5 Closing comments: the shoulders of giants

Initially, I tried to criticise all conventional approaches in economics. My

attitude can be described as ‘fighting against the shoulders of giants’ in contrast

to a famous quote from Isaac Newton in a letter to Robert Hooke on the 5th of

February 1676, i.e. “If I have seen further it is by standing on the shoulders of

giants.” (Newton, 1676). The phrase ‘the shoulders of giants’ means ancestral

works, so that Newton meant his great works did not exist without the previous

research. In the viewpoint of Newton’s quote, my attitude was similar to

treating the previous works as the enemies of my research.

However, as my research progressed, I realised how the previous forms

of works in discrete choice analysis and stochastic simulation approach were

advanced and represented the many real world phenomenon, realistically and

2Induced travel demand is an increase in traffic volume after a new road or new parking
area is opened.
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efficiently. This experience started telling me ‘if you know your enemies, you

may not need to fight with them’, so I gradually changed my mind. This

alteration broke the wall of my stupidity. What I needed for this thesis was

the attitude before the level of Newton’s quote, i.e. recognising the previous

forms of work. Therefore, I say “if I have successfully achieved the aim of this

thesis it is by looking at the shoulders of giants.”

Having said that, the agent-based modelling of my thesis produced signifi-

cant improvements from a conventional mathematical approach. Also, agent-

based modelling as a new comer in science has not been penetrated in or inter-

acted with the conventional research field as Leombruni and Richiardi (2005)

mention; ‘Despite many years of active research in the field and a number of

fruitful applications, agent-based modelling has not yet made it through to the

top ranking economic journals ’. As a researcher in the agent-based modelling,

my next step toward the conventional economic approach as a giant is not only

‘standing on the shoulders of giants’, but also ‘interacting with the shoulders

of giants’. Interaction effects are always important.
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Appendix A

Questionnaire distributed at the

Upper Derwent Valley

Questionnaires were distributed during the summer of 2003 for this thesis.

Pages from 217 to 224 present the master copy of the questionnaires. To fulfill

the regulation of this thesis for the left margin (i.e the left margin should be

between 1.5 and 1.25 inches), the questionnaire was reduced in size. The box

surrounding the questionnaire was the A4 size when it was distributed in 2003.
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Dear Sir / Madam,
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supplied FREEPOST envelope, as soon as possible. No additional stamp is required. Thank
you for assisting me with this research project.

Yours faithfully,

Takeshi Takama

Transport Studies Unit
University of Oxford
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	PART 1: Household characteristics

Please tick the relevant boxes �X, except where otherwise specified.

Section 1 - Personal Details

1. How old are you?

�1: Under18

�2: 18 – 24

�3: 25 – 34

�4: 35 – 44

�5: 45 – 54

�6: 55 – 64

�7: Over 65

2. Are you

�1: Male

�2: Female?

3. What is your occupation?

�1: Managerial

�2: Professional

�3: Skilled Non-Manual

�4: Skilled Manual

�5: Semi/Unskilled Manual

�6: Student/School child ⇒ Go to question 5

�7: Housewife ⇒ Go to question 6

�8: Unemployed ⇒ Go to question 6

�9: Retired ⇒ Go to question 6

�10: Others

4. What is your personal income before tax?

�1: None

�2: Below £10,000

�3: £10,000 – £19,999

�4: £20,000 – £29,999

�5: £30,000 – £39,999

�6: £40,000 – £49,999

�7: Over £50,000

5. What is your main method to get to work/school?

�1: Car driver

�2: Car passenger

�3: Bus/Coach

�4: Park and Ride

�5: Train

�6: Walking

�7: Bicycle

�8: Other

6. Do you have a full driving licence?

�1: Yes, Motor Vehicle

�2: Yes, Motorbike

�3: Yes, both

�4: No licence

7. Please read the description below and indicate which most closely reflects your view (Tick one box only)

�1: I would be willing to reduce my car use, but I do not see the need at present

�2: I would be willing to reduce my car use, but I do not have sufficient information about

the environmental and social impact of reducing car use.

�3: I am strongly resistant to reducing car use.

�4: I could reduce my car use, but have problems using the alternatives.

�5: I could be willing to reduce car use due to awareness of the environmental impact of car

use.

�6: I do not use a car because I have problems or difficulty using it. (Please state your
problem or difficultly below.)
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Section 2 - Household Details

1. How many people are in your household (including
yourself)? (Please state the number below)

2. How many cars and vans do you have in your house-
hold? (Please state the number below)

3. Where is your home location?

�1: Greater Manchester

�2: Sheffield

�3: Other locations in South Yorkshire

�4: Buxton

�5: Bakewell

�6: Other locations in Derbyshire

�7: West Yorkshire

�8: Staffordshire

�9: Lancashire

�10: Nottinghamshire

�11: Cheshire

�12: Merseyside

�13: Other (please state)

�




�

	
PART 2: The trip to Upper Derwent Valley

Please tick the relevant boxes �X, except where otherwise specified.

Section 1 - Questions about today’s trip to the Valley

1. Please give travel times.

[From home to the Valley]

What time did you leave your home? At

What time did you arrive at a parking area in the Upper Derwent Valley? At

[From the Valley to home]

What time did you leave the parking area in the Upper Derwent Valley? At

What time did you arrive at your home? At

2. How did you travel on Derwent Lane to
the Information Centre, today?

�1: By car / van

�2: By Bus / coach

�3: By cycling

�4: By walking

3. Please state the costs of today’s trip.

(a) Parking costs (Please state below)

£

(b) Other transportation cost (Please state below)

£ (e.g. petrol)

(c) Any other costs (Please state below)

£

4. Did you have a car available for the trip you
made today?

�1: Yes

�2: No

5. How many people are travelling with you today

(including yourself)?

(a) How many of these are children under 5?

(b) How many of these are children between 5 and

15?

(c) How many of these are full time students or be-

tween 15 and 26?
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Section 2 - General questions about your travel to the valley

1. How did you hear about the Upper Derwent Valley?

�1: Common knowledge

�2: Tourist leaflet

�3: Tourist information centre

�4: From a friend

�5: Advertising on TV etc.

�6: Other

2. Can you guess how many of your friends go to
the Upper Derwent Valley more than once a year?

�1: No idea ⇒ Go to question 3

�2: Yes (Please state the number below)

(Please guess if you are not sure about this)

(a) How many of them go to the valley between

2 and 5 times a year?

(b) How many of them go to the valley between

6 and 12 times?

(c) How many of them go to the valley around

once every two weeks?

(d) How many of them go to the valley around

or more than once a week?

3. How often do you come to the Upper Derwent Valley?

�1: less than once a year

�2: around once a year

�3: between 2 and 5 times a year

�4: between 6 and 12 times a year

�5: around once every two weeks

�6: around once a week or more

4. What do you think of the impact of other cars in the
car parks of the Valley when it is busy (e.g. noise,
visual impact and exhaust from cars rounding in a car
park to find a space to park)

�1: Significant

�2: Fairly significant

�3: Moderate

�4: Not a big problem

�5: No problem

�6: Not experienced

5. Did you go to the Upper Derwent Valley before today?

�1: Yes ⇒ Go to question 6

�2: No ⇒ Go to question 7

6. Please tick ALL things you remember in EACH past trip to the Upper Derwent Valley.

The last trip The 2nd last trip The 3rd last trip The 4th last trip The 5th last trip

1:Travel time & date �1 �1 �1 �1 �1
2:Travel costs �2 �2 �2 �2 �2
3:The location you park your car �3 �3 �3 �3 �3
4:The time you spent in the Valley �4 �4 �4 �4 �4
5:Traffic situation �5 �5 �5 �5 �5

(including in car parks)

7. What problems, if any, have you encountered on your trip to the Upper Derwent Valley?

Please write comments here!
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PART 3: Hypothetical Trip to the Valley

Explanation of Terms used - “Please see the map below”

Road User Charge (£): It aims to limit traffic volumes by charging motorists to use Derwent

Lane. A toll to enter Derwent Lane from the A57 will be charged.

Park & Ride (£): Those who do not want to pay the road user charge will be able to use a new

bus service with a low fare. The service links to local car parks, Bamford train station, and the

Upper Derwent Valley. The location for the parking site around the toll gate of the road user

charging scheme has not been decided.

Frequency of bus service (minutes): This is the period between departure times of the

shuttle buses for Park & Ride.

Searching & walking time (minutes): This is the com-

bination of the period of searching for a space to park

and walking time from a parking area to the Information

Centre.

Parking fee (£): The parking fee for the Park & Ride ser-

vice is the fee you pay when you park your car before

getting on a bus. The parking fee for Toll & Ride is the

fee you pay when you park your car at one of the four

car parks along Derwent Lane.

In this part of questionnaire, I would like you to

imagine travelling to the Upper Derwent Valley next

weekend WITH THE SAME TRIP MEMBERS

AS TODAY. Imagine you arrive at the entrance of

Derwent Lane and you need to visit the Information

Centre at Fairholmes, Upper Derwent Valley. Please

RANK three options in each scenario. The most

preferred option is ranked “1” and the least

preferred option is ranked “3”.

P

P

P

P

1 mile

P Parking area

Reservoir

The Upper Derwent Valley

A57
Toll Gate

Derwent
Lane

Information
Centre

Ladybower

This is an example

1. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 20p per person Toll £2.00 per car
A bus every 15 minutes Searching for a parking space

and walking to the centre
takes 30 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ 2 ] A: Park & ride

[ 1 ] B: Pay toll and drive ⇐ “Most preferred”

[ 3 ] C: None of them (don’t visit the valley)
⇑ “The least preferred option”

This is an example
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PLEASE COMPLETE ALL 16 QUESTIONS, even
though the stated conditions may be unrealistic to you. These
are HYPOTHETICAL questions. Please answer the ques-
tions by RANKING, but NOT TICKING (i.e. COR-
RECT = “1, 2, 3” WRONG = “✓”). Please see the ex-
ample on the previous page.
1. Conditions to visit the Information Centre:

Park & Ride service Toll & drive

Fare 20p per person Toll £1.00 per car
A bus every 5 minutes Searching for a parking space

and walking to the centre
takes 1 minutes

Parking fee 10p per car Parking fee 50p per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

2. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 20p per person Toll £2.00 per car
A bus every 15 minutes Searching for a parking space

and walking to the centre
takes 30 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

3. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 20p per person Toll £3.00 per car
A bus every 30 minutes Searching for a parking space

and walking to the centre
takes 50 minutes

Parking fee 50p per car Parking fee £1.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

4. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 20p per person Toll £5.00 per car
A bus every 45 minutes Searching for a parking space

and walking to the centre
takes 15 minutes

Parking fee 50p per car Parking fee £2.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

5. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 50p per person Toll £1.00 per car
A bus every 15 minutes Searching for a parking space

and walking to the centre
takes 15 minutes

Parking fee 50p per car Parking fee £1.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

6. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 50p per person Toll £2.00 per car
A bus every 5 minutes Searching for a parking space

and walking to the centre
takes 50 minutes

Parking fee 50p per car Parking fee £2.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)
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7. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 50p per person Toll £3.00 per car
A bus every 45 minutes Searching for a parking space

and walking to the centre
takes 30 minutes

Parking fee 10p per car Parking fee 50p per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

8. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 50p per person Toll £5.00 per car
A bus every 30 minutes Searching for a parking space

and walking to the centre
takes 1 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

9. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 80p per person Toll £1.00 per car
A bus every 30 minutes Searching for a parking space

and walking to the centre
takes 30 minutes

Parking fee 50p per car Parking fee £2.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

10. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 80p per person Toll £2.00 per car
A bus every 45 minutes Searching for a parking space

and walking to the centre
takes 1 minutes

Parking fee 50p per car Parking fee £1.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

11. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 80p per person Toll £3.00 per car
A bus every 5 minutes Searching for a parking space

and walking to the centre
takes 15 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

12. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare 80p per person Toll £5.00 per car
A bus every 15 minutes Searching for a parking space

and walking to the centre
takes 50 minutes

Parking fee 10p per car Parking fee 50p per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

13. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare £1.00 per person Toll £1.00 per car
A bus every 45 minutes Searching for a parking space

and walking to the centre
takes 50 minutes

Parking fee 50p per car Parking fee £2.50 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

14. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare £1.00 per person Toll £2.00 per car
A bus every 30 minutes Searching for a parking space

and walking to the centre
takes 15 minutes

Parking fee 10p per car Parking fee 50p per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)
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15. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare £1.00 per person Toll £3.00 per car
A bus every 15 minutes Searching for a parking space

and walking to the centre
takes 1 minutes

Parking fee 50p per car Parking fee £2.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

16. Conditions to visit the Information Centre:
Park & Ride service Toll & drive

Fare £1.00 per person Toll £5.00 per car
A bus every 5 minutes Searching for a parking space

and walking to the centre
takes 30 minutes

Parking fee 50p per car Parking fee £1.00 per car

Under these circumstances, I would:

[ ] A: Park & ride

[ ] B: Pay toll and drive

[ ] C: None of them (don’t visit the valley)

• How much would you be willing to pay to drive into the Derwent Lane if a road user charging is enforced?

(Please state)

Please return the completed questionnaire to me in the envelope provided.

Thank you for taking part in the study.

If you are willing to participate further in this study by exchanging messages with

me through email or telephone, could you please provide your contact details below?

Name:

e-mail:

Phone:

Your information will be used only for this research and your privacy and e-mail

address will be respected at all times.

You can find the latest information on this project in my homepage:

http://users.ox.ac.uk/∼scat1898/

Please feel free to visit.
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Appendix B

Java source codes created in

this thesis

Overall 221 classes were created during this thesis project. If they are printed

out, the length of the source codes are much longer than this thesis (i.e. over

600 pages). Therefore, the hard copy of the source codes is not printed, but

they are freely accessible within foreseeable future from the URL link below:

http://www.geog.ox.ac.uk/∼ttakama/files/

When the URL link is opened, a popup window asks you for a user ID and

password. Therefore, please type these correspondingly:

User ID: thesis

Password: javasource
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